Copyri ght 1983:

Di stributed by

Li censed for U.S. publication to M SOSYS, Inc., Sterling,

Note: LDCS is
TRSDCS i

HARTFORTH - A 79-Standard FORTH Conpi |l er

khkkkhkhkhkkkhkhkkkhkhkkk*k

HARTFORTH

khkkkkhkhkkkhkhhkkkhkhkkk*k

A-M Gaham Al rights reserved.
MOLI MERX Ltd., East Sussex, ENGLAND

Tabl e of Contents

Di stribution D skette

Model | TRSDOS Patch

Note on Model [/111 Compatibility

Cetting Started

The FORTH C\VD file . .

An I ntroduction to FORTH .

An Overvi ew of HARTFORTH .

HARTFORTH Error Msssages

Addi ti onal Functions . .

FORTH 79 St andard Reference

Addi tional Wrds in FORTH Ker nel . .
Ceneral Uility Wrds in FORTH Vocabul ary
Assenbl er . .
Addi ti onal Cont roI Funct i ons

Term nal and Print Functions

Virtual Menory Editor

Screen Editor

Doubl e Length Words

String Handling Wrds

Arrays . . .

TRS- 80 Devi ce W)rds

Random Nunbers .

Fl oati ng Poi nt

Debug Facilities

a trademark of Logical Systens, Inc.
s a trademark of Tandy Corp.

HARTFORTH - 1

Virginia 22170

HARTFORTH - A 79-Standard FORTH Conpi |l er

Di stribution D skette

The distribution diskette has one file which contains the HARTFORTH
conpiler. The file is naned "FORTH CMD'. You should make a working copy of
HARTFORTH and preserve the distribution diskette safely. This manual covers
both the Model 1/111 version of HARTFORTH and the Mdel 4 TRSDOS 6. x version
of HARTFORTH. For use on the Mdel | or Mdel 111, HARTFORTH is distributed
on a 35-track single density LDOS formatted data diskette. The diskette is
readable with DOSs other than TRSDOS on either machine. For Mdel | TRSDOS
2.3, read the "MODEL | TRSDOS PATCH' section before you attenpt to use or
BACKUP t he HARTFORTH distribution diskette. For Mdel 11l TRSDOS 1.3, use the
CONVERT program supplied with your DOS to copy HARTFORTH to your DGOS
di skette. For TRSDOS 6.x, HARTFORTH is distributed on a double density 40
track data diskette.

Model | TRSDCS Pat ch

Model | TRSDOS users will find difficulty in reading the distribution
disk due to the data address mark used for the directory. Therefore, before
maki ng a BACKUP or copying HARTFORTH from the diskette, you wll need to
change one byte of the TRSDOS 2.3 disk driver using one of the following 3
met hods. This change will in no way affect the operation of your TRSDCS.

Method (1) directly nodifies the system diskette with a patch. To
prepare for this patch, obtain a fresh BACKUP of your TRSDCS 2.3 to use for
this operation. Then enter the followi ng BASIC program and RUN it. After you
RUN t he program re-BOOT your TRSDCOS di skette to correct the byte in nenory.

10 OPEN'R', 1, " SYS0/ SYS. WKI A: 0"
20 FIELD 1,171 AS R1$, 1 AS RS$, 84 AS R2$
30 GET 1,3: LSET RS$="<": PUT 1,3: CLOSE: END

Met hod (2) uses DEBUG to change the byte in nenory. Use this if you do
not want to patch your TRSDCOS system di skette and are famliar with DEBUG

At TRSDCS Ready, type DEBUG fol |l owed by <ENTER>.
Depress the <BREAK> key to enter the DEBUGger.
Type Mi6BO foll owed by the <SPACE> bar.

Type 3C foll owed by <ENTER>.

Type 402D fol | owed by <ENTER>.

ghwONE

Method (3) uses a POKE from BASIC to change the value directly in
menory. This procedure is as follows:

1. Enter BASIC (files = 0, protect no nenory)
2. Type PCKE &H46B0, 60 fol | owed by <ENTER>.
3. Type CMD'S foll owed by <ENTER>.

Now, after using any one of the nmethods noted above, COPY the FORTH CVD file
fromthe HARTFORTH di skette to your TRSDOS di skette.

HARTFORTH - 2

HARTFORTH - A 79-Standard FORTH Conpi |l er

Note on Model [/111 Compatibility

The Model [I/111 version of HARTFORTH should be conpatible with all
TRSDCS conpatible DOS' s as it uses only docunented DOS and ROM calls that are
conmon to both the Mbddel | and Model 111 conputers. This U S version detects
whet her HARTFORTH is running on a Moddel | or a Mddel 11 by the ROM contents
at address 125H (Model 111 = 49H Mdel | anything else). The contents of
SYS+21 (see "An Overview of HARTFORTH') are nodified to use the proper
address for the H gh Menory pointer (4049H for Mdel |; 4411H Model 111).

Model | users of TRSDOS 2.3 who suffer from the error in TRSDOS that
crashes the system or enters DEBUG when the BREAK key is pressed can use
the foll owing FORTH word in your applications to elimnate this problem

BREAK. OFF 0 17173 C ;

This error occurs because a flag is erroneously set inside TRSDOS that
makes it think that DEBUG has been activated when it has not. The word above
clears this flag and ensures that DEBUG cannot be entered. After typing the
definition of BREAK OFF exactly as shown and pressing <ENTER>, type BREAK. OFF
(followed by <ENTER>) to action the definition and disable DEBUG
Alternatively you could type "0 17173 C! <ENTER>" to clear the flag directly
wi t hout actually defining the word, BREAK COFF.

Cetting Started

Wl come to the world of FORTH. You now have available to you a powerful

hi gh-1 evel |anguage devel opnent system that w |l execute your prograns at
least ten times faster than interpreted BASIC while also supporting inter-
active nodification and debugging. It is well worth reading this nmanual

thoroughly and with care fromfront to back, even if a lot of it does not at
the noment nake sense. There is a lot of inportant detail given in it that
may not at first reading be apparent, but is as well to have in the back of
your mind for when you may need it. Al so please renenber that Ronme wasn't

built in a day and it will take sone tine to becone fluent in FORTH (do you
remenber how difficult it seemed when you first started |earning BASIC?).
Start gently and work your way in slowy, the effort will be rewarded as you

becone fluent in this fascinating | anguage.

The procedure to use HARTFORTH is very sinple. Using the working copy that
you have just made, run HARTFORTH by typing

FORTH <ENTER>
The programtitle will appear together with the conmmand:

ENTER FI LESPEC OF FORTH VI RTUAL MEMCRY

HARTFORTH - 3

HARTFORTH - A 79-Standard FORTH Conpi |l er

Reply to this by typing:
FORTH CVD <ENTER>

After a couple of seconds the conmpiler's prompt of "OK wll appear. You are
now up and runni ng!

Note that this filenane, FORTH CMD, nust be entered in capital letters
as HARTFORTH does not support automatic |ower to upper-case conversion. To
assist this HARTFORTH sets the capital lock bit of the TRSDOS 6.x system fl ag
table on entry (Mddel 4 operation) although |ower case may be accessed as
normal by toggling the CAPS key or using Shift-0.

The FORTH C\VD Fil e

The file FORTH CMD is 80K bytes long (where a 'K is 1024) and contains
a pre-conpil ed HARTFORTH system together with the FORTH source code for nany
utilities and extensions to the 79-STANDARD HARTFCORTH kernel. Wen you are
typing into HARTFORTH from the keyboard, the Left-Arrow key w |l backspace
and erase a character, and Shift Left-Arrow will delete the entire line of
text. These facilities to correct mstakes are provided by the FORTH word
EXPECT which is also used by QUERY and by the outer interpreter and so are
avai | abl e when inputting to any prograns that al so use these words.

If you type 'INDEX <ENTER> you will be given a list of the contents of
the file. The nunbers to the left of the vertical line are nerely line
nunbers as the | NDEX word uses the standard word LIST to list the contents of
Screen 13 (i.e. the contents of the thirteenth bl ock of FORTH CMVD, each bl ock
bei ng 1K bytes long). The nunmbers to the right of the vertical line are the
screen nunbers of the relevant blocks of source code. Sonme of these screens
are already conpiled into HARTFORTH, these being screens 21 to 36 inclusive.
If you wish to execute any of the other screens you wll first have to
conpile them into HARTFORTH s dictionary using either the LOAD or the LQOADS
conmands. Blocks 1 to 16 (17 to 19 are spare) are used to store the conpil ed
code of HARTFORTH (this is the function of SAVE-SYSTEM and so do not appear
on the index. A detailed description of the purpose and words of each of the
screens is given later in this nmanual.

The first thing that you will probably want to do (and should do) is to
| ook at these screens and to do this you will need to use sone of the ED TOR
functions, so after reading the rest of the manual sit down and play with the
editor until you feel happy using it. It is inportant to get conpletely
famliar with the editor's facilities as you will be using it a lot to wite
and nodi fy your screens of source code. To enter the full screen editor type:

EDI TOR x VI EW <ENTER>
where "x" is the nunber of the screen you wish to ook at. The screen wll
now be shown on the display and using the commands listed in the glossary you
can nove the cursor around and edit the screen at either the character or the
line level. To save any changes you have made you need to press 'S (save)
whi ch copies the contents of the display back to the area in nmenory where the
Virtual Menory system placed the screen when it read it from disc. If you
didn't do this your changes would be lost. By using the "+ and '-' keys you
can see the last or the next screen and pressing 'Q gets you back to the

HARTFORTH - 4

HARTFORTH - A 79-Standard FORTH Conpi |l er

EDI TOR vocabulary. Pressing 'Q again will return you to FORTH and save any
screens that have been updated to disc.

At the end of the FORTHHCVD file there are three screens left blank for
you to practice with, and to store your first programs in. Later you will be
able to use the NEWFILE utility to create new Virtual Mnory files, and
RESTART and SAVE- SYSTEM to transfer your prograns to them so giving you a | ot
nore space to work with. One file can occupy a whole disc (except that single
disc drive owners will need to have a m nimum DOS on their discs) so you will
not be short of space in the future.

There is a function VLIST that displays all the words in the CONTEXT
vocabulary and the output of VLIST nmay be halted by pressing any key; a

further depression of any key will restart the listing. If a word doesn't
seem to be present it is probably because it has not been LOADed. The
followng short definition will do a check and tell you wthout having to

wade through VLIST's output. Try putting it on one of the spare screens wth
the EDITOR and then LOAD it so you won't have to type it in next tine (though
you will have to LOAD it again).

GOl FIND IF ." Present” ELSE ." Not found " THEN CR ;
Use it to see if the word FRED i s present by typing GOT FRED <ENTER>.

You will notice a thick vertical bar by sonme of the words in VLIST s
output, these words are |MVEDI ATE words that are always executed even if
encountered in definitions. The reason that a word is |IMVED ATE is normally
because it is required to take sonme conpile-tinme action, for exanple, LITERAL
takes a nunmber from the stack and encloses it, together with the run-tine
literal handler, in the new word so that the nunber may be returned to the
stack |l ater when the word is executed.

Before trying to use a utility or facility it is inportant to read the
encl osed description of the utility and the associated glossary that wll
detail the action of the FORTH words associated with that utility. Note that
not every word that you will find on the HARTFORTH screens is described,
those words that are not are internmediate words used to inplenment sone higher
function and are not neant to be used on their own.

HARTFORTH - 5

HARTFORTH - A 79-Standard FORTH Conpi |l er

An I ntroduction to FORTH

This manual is not intended to be a course of instruction in the FORTH
| anguage. However sonme of the inherent characteristics of the |anguage wll
be briefly described. It is recomended that the user invests in sone other
literature concerning the FORTH |anguage, bearing in mnd that there are
di fferences between inplenmentations of FORTH, and that HARTFORTH conforms to
t he 79- STANDARD.

It can at tinmes be difficult to trace FORTH literature but Foyle' s of
London carries a small stock in their section on conputer |anguages as do
some other specialist booksellers. In case of desperation | have found that
Mountain View Press Inc, PO Box 4656, Muntain View, CA 9404, U S A who
specialize in the FORTH | anguage are very helpful. They publish a range of
FORTH Iliterature and to order from them just send them your Visa
(Barclaycard) or Mastercard (Access) nunber together with the expiry date
(they need that in the States for nail-order whereas over here they don't
seem to). They advertise in the BYTE nagazine fromtine to time, and night be
able to supply any books that are difficult to obtain from nornal
booksel | ers.

Anongst the books | would recommend are: -

FORTH 79 STANDARD published by the Forth Interest Goup available from
Mountain View A copy is highly recommended though it is a standards document
and needs careful study. It is not a tutorial but a reference.

STARTING FORTH by Brodie, published by Prentice-Hall. A copy of this is
recommended for the conplete novice but is rather "Anerican' in its treatnment
of the subject.

DI SCOVER FORTH by Thom Hogan, published by Gsborne/McGaw Hill. Another good
book for the beginner but as with Starting Forth above be aware that some of
the FORTH words described in these books do not belong to the 79- STANDARD but
to other de-facto standards such as FI G FORTH

THREADED | NTERPRETI VE LANGUAGES by R Loeliger published by Byte Books. This
is for the Z80 assenbly programrer who is interested in how FORTH "ticks"
internally. It does not describe a 79- STANDARD FORTH but a "home-brew' Forth-
i ke |anguage called ZIP. However the inplenentation techniques are the same
and very interesting if you wish to have sone idea as to how FORTH wor ks. One
for the technically mnded who knows the Z80 processor.

THE COVPLETE FORTH by Alan Wnfield, published by Sigma Technical Press. A
hi ghly reconmended book and a conplete introduction to 79- STANDARD FORTH. Be
warned that the single/double precision input fromthe input stream described
in Chapter 8 is not 79-STANDARD as inplied and that as such HARTFORTH does
not provide it, and that Chapter 7 does not stress the inportance of clearing
"> N' before using QUERY. Ot herw se an excellent book - and British!

BEA NNI NG FORTH by Paul M Chirlian, Mtrix Publishers, Beaverton, OR

HARTFORTH - 6

HARTFORTH - A 79-Standard FORTH Conpi |l er

There is a FORTH Interest Goup in the UK and the contact is The Hon.
Sec., Forth Interest Goup UK, 15 St. Al bans Mansion, Kensington Court
Pl ace, London, W8 5QH The 79- STANDARD is avail able through them and | would
think that a stanped addressed envelope for their reply mght be nuch
appr eci at ed.

The FORTH I|anguage originated from a nman called Charles More who
evolved it over about ten years for the rapid design and debuggi ng of fast
real-time progranms. He subsequently founded a conpany, FORTH INC , whose
business is the exploitation of the FORTH | anguage, primarily as POLYFORTH, a
multi-user system for the larger mniconputers although they also have a
M CROFORTH for smaller conputers. A Forth Interest Goup grew up and has
contributed greatly to the spread of the |anguage on smaller computers by
making w dely available a version of FORTH called FIGFORTH and nore
recently by refining and publishing the 79-STANDARD definition of the
| anguage in an attenpt to gain a higher level of transportability from one
conputer to another of progranms witten in FORTH using only this standardized
set of words.

FORTH is hard to describe in the same terns as other conputer |anguages.
Its major characteristic is that it enables a set of conmands that performa
function to be given a nane, which nane nay then be used with other conmands
to form anot her name which perforns a nore conplicated function.

A FORTH command consists of a single word which can be any conbination
of letters, nunbers and punctuation, except that it cannot contain any spaces
as FORTH uses spaces as the gaps between words. The 79- STANDARD defines a
m ni mum set of these words that are to be supplied with any FORTH that
conplies with the standard and these words are then used as the basis for
defining other nore conplex words. Because of this technique of building up
functions from other |ower |evel functions FORTH could be regarded as a very
convenient way of defining and |inking sub-routines or procedures. As you
cannot use a nane that has not yet been defined FORTH tends to produce highly
structured prograns and its control structures are designed to encourage
this. This makes large progranms nmuch easier to understand and debug than
BASIC. For exanple a PASCAL to FORTH translation and vice-versa is quite
easily done, but it is much nore difficult to translate BASIC into either
FORTH or PASCAL due to the lack of structure in nost BASIC prograns.

FORTH is designed to operate on 16 bit words which may be data or byte
addresses, thus giving an addressing range of 64K bytes. It is intended to
operate with a nmass storage medium (normally disc) and has no file structure.
It regards the mass storage as a set of nunbered 'blocks' of 1024 bytes and a
Virtual Menmory systemis provided to access these blocks by swapping themin
and out of the physical menory of the conputer when required. The progranmer
accesses any desired block by putting the block nunber on the stack and
i nvoki ng the word BLOCK which reads the block fromdisc to a buffer in nenory
and returns to the stack the address in menory of the start of the buffer.
That address is valid only for the 1024 bytes of the block requested. By this
means the interface to the mass storage device is entirely processor and
menory devi ce independent and provides a sinple interface to the programer
who nerely asks for the desired block and finds it placed in nenmory for him
If a conventional file structure is required it is entirely possible to wite
it in FORTH on top of the standard Virtual Menory system but this is
normally of little point for single-user mcro-processor inplenmentations of
t he | anguage.

HARTFORTH - 7

HARTFORTH - A 79-Standard FORTH Conpi |l er

FORTH is a stack oriented |anguage in which data is first put onto a
Data Stack and then manipulated on the stack. This leads to the |anguage
havi ng post-fixed operators, better known as Reverse Polish Notation, which
| ooks odd to many people at first but a little practice is sufficient to make
it second nature, and this has the advantage of not requiring the parentheses
in expressions or the ordering of the priority of operators that conventional
notation requires. Variables and Constants nmay be declared as required and
this contributes to FORTH s structuring as non-inportant |ocal variables are
not named but are carried on the stack, while inportant global Variables and
Constants are naned.

In fact there are two stacks in FORTH, the first being the Data Stack
which is very obvious to the programmer, the second being the Return Stack
which is less obvious, though it can also be used to carry data - but wth
great care - Dbecause this stack is used by FORTH to hold its |Ilinking
information as it works its way down a word s definition to get to the
primtive definitions that do the actual work. It is also used by sone
versions of FORTH (HARTFORTH is one) to hold the paraneters of a DO ... LOCOP
construct thus providing an automatic nesting mechanismto allow | oops to be
enbedded in other loops. It is thus inportant that if the Return Stack is
used by the programmer within a DO ... LOOP it is returned to its original
state before the end of the loop. Simlarly if the Return Stack is used
within the definition of a word it nmust be cleaned up by the end of that word
or FORTH s linking back to the higher level that invoked the word wll be
wrong and the systemw || crash.

Al FORTH words are held in a 'dictionary' which can be extended by
defining new words. These new words can be either machine code '"primtives'
which are inplenmented using the Assenbler supplied with FORTH, or they are
'secondaries' built out of words that already exist in the dictionary. It may
not be obvious that the FORTH conpiler, also called the "outer interpreter’,
works in two nodes depending on the value of a system variable called STATE
VWhenever a word is given to the conpiler, either fromthe keyboard or from a
disc Screen (a disc block that contains FORTH source code is terned a
‘screen’') then FORTH | ooks up the address of that word in its dictionary of
existing words. If the word doesn't exist then it is assuned to be a nunber
and is converted to binary using the current value of the system variable
BASE (normally 10 for decinmal input) and placed on the stack if STATE=0,
otherwise it is put into the dictionary as a literal to be returned to the
stack when the word is executed. If it is not a valid nunber in that base
then a WORD ERROR is displayed and the conpiler returns to interpret input
from the keyboard canceling any word that was part conpiled. Wen a word is
found that does exist then if STATE=0 the word is inmediately executed,
otherwi se the word's address is conpiled into the newest dictionary entry to
becone a part of the definition of a new word.

This switching of STATE is mainly performed by two FORTH words, ':' and
";'. The function of '":' is to take the next word <nanme> that follows, to
create a new entry in the dictionary for that <nane> and to set STATE=1.
Fol I owi ng words thus have their addresses conpiled into the definition of
<name> so that they may be executed when <name> is invoked. Wwen ';' is
encountered at the end of a definition it sets STATE=0 and checks that no
structuring errors have occurred during the definition. Further words from
the input stream will now be executed until STATE is set non-zero again to
conpil e the definition of another new word.

HARTFORTH - 8

HARTFORTH - A 79-Standard FORTH Conpi |l er

To give a sinple exanple the following trivial word will get a line of
text up to 32 characters long from the keyboard and echo it to the display.
Note that you will have to type this definition into a screen because it is

nore than 80 characters long and so overfills the keyboard input buffer.

ECHO ." Enter text - " PAD 32 EXPECT CR
" Your text was
PAD BEG N DUP C DUP 0> WH LE EM T 1+ REPEAT DRCP DRCP ;

The ':' creates a new word called ECHO in the dictionary and as STATE is set
to 1 the outer interpreter conpiles the addresses of the following words into
the definition of ECHO until ';"' is reached. In fact there exists a class of
| MVEDI ATE node words that the conpiler will recognize and will execute and
not compile even if STATE=1, and ';' is one of these words as it mnmust be to
actually execute during conpilation. Typing ECHO will now ask you for a
string of text, will wait for you to type up to 32 characters and an <ENTER>
and will then echo your line and re-enter the outer interpreter with the 'K
pronmpt. Note that this definition uses the fact that EXPECT returns a null
character at the end of the string.

Classically the action caused by a FORTH word is described using a
"stack picture' and a witten description; this is the case with the encl osed
gl ossaries. The actual source coding on the supplied FORTH Screens is not
good FORTH practice due to the need to get a lot into a small space. The
cl osest approach to good FORTH style is probably the Floating Point Screens
where you will see that the structuring is easily visible. It is a good idea
to put a 'stack picture’ and description with each word as it is defined
using the 'brackets' that allow coments to be ignored by FORTH An
alternative idea is to use alternate screens for code and comment and to
conpile themwith a command that only LOADs every other Screen. For exanple:-

ALTERNATE. LGAD (n1 n2 -> ,conpiles every alternate)
(screen fromscreen nl to screen n2)

1+ SWAP DO (set up loop start and end)
CR I (get index and do a newine)
" Loading Screen " (print screen to load)
I LOAD (load the screen)
2 +LOOP (increment |oop index by 2)

Used as '2 8 ALTERNATE. LOAD <ENTER>, this would conpile screens 2,4,6, and 8
only, while showing how far it had got in the conpilation by displaying the
nunber of the screen that was currently being interpreted. This allows all
the odd nunbered screens to be used for holding coments. Commenting your
source code is highly recommended as FORTH can be a terse |anguage at tines
and it helps to know what a word does when you cone to try to understand what
you were doing six nmonths |ater!

It is worth enphasizing that FORTH makes no distinction between the
keyboard and the screens on disc as it has only one '"input stream. Wile it
is waiting for the keyboard it is in fact LOAD ng from BLOCK 0O, although this
block is in fact the keyboard input buffer and is only 80 bytes l|long. The
bl ocks on disc start at BLOCK 1 and all that LQOAD does is to point the outer
interpreter to the appropriate disc block. Therefore it is possible to do
anything from a screen on disc that can be done from the keyboard, and vice
versa. It is this factor that nmakes FORTH so interactive and easy to debug.
Any definition, once conpiled can be exercised from the keyboard and the
stack and variabl es exam ned to check that it is doing the correct thing.

HARTFORTH - 9

HARTFORTH - A 79-Standard FORTH Conpi |l er

Note al so that several FORTH conmands can be given on one |ine separated
only by spaces. The action of the <ENTER> key only nakes the keyboard input
buffer available as Block O to be interpreted. During interpretation FORTH
actions each word as it encounters it and does not need to parse comrands
like normal conpilers with a conventional structure.

Any FORTH program ends up as a single word definition that is invoked to
execute all the lower level definitions that constitute the program It is
not necessary for a FORTH program to ever return to the outer interpreter
once it is invoked. The outer interpreter is present only to add new
definitions to the dictionary and takes no part in the execution of a FORTH
program

FORTH s concept of vocabularies is sonetinmes confusing to beginners. At
any time the outer interpreter acknow edges two vocabul aries. These are the
CONTEXT vocabulary which is searched for words to be executed, and the
CURRENT vocabulary to which new words are added. Oten these are the sane,
and usually they are the FORTH vocabul ary. A vocabulary is nerely a list of
FORTH words within the dictionary that are |linked together and all the words
in the 79-STANDARD kernel are in the FORTH vocabulary. 1t is possible to
define new vocabularies and two such, the ED TOR and the ASSEMBLER are
defined in the HARTFORTH screens. The purpose of a vocabulary is to keep a
set of words separate from another set of words. For exanple INDEX in the
FORTH vocabul ary (screen 20) lists the contents of screen 20, while INDEX is
redefined in the EDITOR to list the top (coment) lines of a range of
screens. Al vocabularies termnate back at the top of the FORTH vocabul ary
so that all vocabul aries, besides containing their own words al so contain all
of the FORTH vocabul ary, even the words that were defined in FORTH after the
new vocabul ary was defi ned. To access the words in any vocabulary it is
necessary to make that vocabulary the CONTEXT vocabulary, which is done
merely by invoking its nanme. To add words to a vocabulary it is necessary to
make it the CURRENT vocabulary, which is the function of the word
DEFI NI Tl ONS. This can be seen in the ED TOR screens and to use any of the
EDI TOR functions it is necessary to make ED TOR the CONTEXT vocabul ary by
typing 'ED TOR . Note that all vocabulary names are | MVEDI ATE so that you
can change CONTEXT within a definition while conpiling; if for sonme reason
you w sh to change CONTEXT during execution you will need to precede the
vocabul ary name by (COWILE). Also note that ' and FIND operate on the
CONTEXT vocabul ary, while FORGET operates on the CURRENT vocabulary. To
FORGET a word in the ED TOR vocabulary for exanple, you will need to say
EDI TOR DEFINITIONS to make EDI TOR the CURRENT vocabul ary. After FORGET both
CONTEXT and CURRENT will be set to FORTH.

Because it is 16 bit word oriented, the FORTH kernel is specified with
mainly 16 bit integer arithmetic and logical functions, with only a few 32
bit double length integer functions. However due to the extensibility of the
| anguage, and the care with which the original functions were specified, it
is possible to wite both extended length integer and floating point
extensions to perform whatever arithnmetic operations are required. A mnor
di sadvantage of FORTH is that its structure is not ideally suited for
"nunber - crunching' as operands have to be transferred to the stack before
being used, and stored away afterwards. The additional overhead of these
noves slows FORTH down on larger nore powerful processors, but on 8 bit
machi nes other speed factors, like the lack of hardware multiply and divide
instructions, far overshadow this limtation.

HARTFORTH - 10

HARTFORTH - A 79-Standard FORTH Conpi |l er

An Overvi ew of HARTFORTH

HARTFORTH is a full FORTH that confornms totally to the 79-STANDARD as
di scussed previously. Sone of the following information is of a detailed
technical nature that the nore advanced programer nmay need to know and it is
included for his reference and interest, but it 1is not necessary to
understand all this information to use HARTFORTH ef fectively.

The technically interested may care to know that HARTFORTH is not a
nodi fied FIGFORTH, but is an entirely new inplenentation internally designed
around the 79- STANDARD. In fact HARTFORTH version 4 (the Mdel 4 version) is
a Direct Threaded Code inplenentation of FORTH which provides an execution
speed between 10% and 40% faster (on a Z80 at least) than the classical
Indirect Threaded Code inplenmentation. This means that all colon definitions
have a three byte code field address that is in fact a CALL to the
appropriate machine code COLON routine. Primtives have no code field as
such, the machine code to be executed commences at the code field address. In
fact all this is transparent to the programer who need not know the details
of the inplenmentation. The Direct Threading of HARTFORTH is not in fact a
CALL/ RETURN i npl enentation as this would slow the conpiler down by tying up
the stack for return addresses. The stack is used for data and the return
stack is synthesised using the |IX register as this provides the fastest
possi bl e execution speed on a Z80. Its nenory usage starts at 3000H (5200H
for the Mdel 1/111 version) where the 2 x 1024 byte Virtual Menory bl ock
buffers are situated, followed by the system variables such as BLK and >IN,
the 80 byte terminal input buffer (BLOCK 0) and the Virtual Menory 256 byte
sector buffer and 32 byte File Control Block (50 byte for Mdel 1/111). The
actual program cones next, this is the address that is returned by the word
SYS and is the transfer address to start the program The purpose of starting
the Mbdel 4 version at 3000H is to allow the advanced user to call TRSDCS 6. x
library comrands from within FORTH using the DO SVC command if he so
requires. During normal Mddel 4 FORTH operation, the area from 2600H to 2FFFH
is available for use as "scratchpad" nmenmory if required, and in fact the
screen Editor uses the area to build its display output as does the menory,
file and sector Editor on screens 56-62.

The two stacks are located in high nmenory with the Data Stack being
| ocated 64 bytes below the top of nmenory or F400H, whichever is the lower, in
order to allow sone neasure of stack underflow in error conditions wthout
overwiting anything inportant that mght be up there (the Mdel 1/111 stack
is based on the Hgh Menory pointer contents). The Return Stack is |ocated
512 bytes below the Data Stack. Both stacks grow downwards as is normal Z80
practice.

When adding new prinmtive words using the Assenbler it is vital that the
follow ng Z80 registers are not altered. They may be used within the word but
must be unchanged when END-CODE is invoked. The function of END-CODE is to
exit from the ASSEMBLER vocabul ary and term nate the machine code with a JP
(1Y) to return to FORTH s address interpreter.

Regi ster BC contains FORTH s internal Program pointer.
Register I X is used as the Return Stack pointer.

Regi ster 1Y contains the address of FORTH s NEXT code.
Regi ster SP is used as the Data Stack pointer.

On entry to a machine code primtive, register HL contains the Code Field
Address of that word. Both HL and DE registers may be used as required

HARTFORTH - 11

HARTFORTH - A 79-Standard FORTH Conpi |l er

wi t hout being preserved, as can AF and the entire alternate register set. On
entry to a ;CODE machine code sequence DE contains the parameter field
address of the invoked word.

In addition to all the 79-STANDARD required words the HARTFORTH ker nel
contains sone additional useful words and utilities which are documented in
the glossary and which turn HARTFORTH into a fully-fledged FORTH devel opnent
system

Unl i ke many inplenmentations of FORTH, HARTFORTH is designed to run under
an operating system and so the Virtual Menory that it accesses for storage
and retrieval purposes is not the disc medium directly (as would be nornal)
but is a file created and controlled by the operating system It is the name
of this file that is requested by the FORTH system when it is first entered.
Doing this has several advantages in that it provides for FORTH files to be
used by other programs and vice-versa and the fact that FORTH is running
under an operating system is entirely transparent to the programer, he
nmerely appears to have a smaller disc than usual at his disposal.

In inplenenting this nethod the system has been constrained to work only
within pre-created files of fixed lengths so that the possibility of
interfering with other possibly valuable files on the disc by danmaging the
directory is elimnated. Pre-allocating the disc space ensures that there is
never any need to update the GAT table in the directory so that FORTH never
has to 'close' its Virtual Menory file. Therefore even if HARTFORTH crashes,
the integrity of the directory is maintained. Having said this it should be
noted that TRSDOS 6.0 sets an "open"” bit in the directory of an open file to
avoid two tasks witing to the file at once, so the word DOS in HARTFORTH, as

well as flushing all the Virtual Menmory buffers to disc, will also close the
Virtual Menory file. Any error found when closing the Virtual Menory file
will be displayed but normally the words 'NO ERROR will be shown as

confirmation that there was no problem on exit from HARTFORTH. In the event
that the Virtual Menory file is found to be open when HARTFORTH is started,
for exanple after a crash during program developnent, it wll display the
fact as 'FILE ALREADY OPEN but wll override the TRSDOS file protection
mechanism and allow the file to be witten to and then closed normally on
exit. This effective fixing of the length of the Virtual Menory files is a
slight disadvantage at tines, however functions are provided within the
HARTFORTH editor to help overcone this by allowing new files to be created
from within HARTFORTH and to allow the current Virtual Menory file to be
changed for anot her and mani pul ated at the individual bl ock I|evel.
Enhancenents to the 79- STANDARD have been built into the HARTFORTH kernel in
the form of functions to call the standard operating system file handling
routines so that other files may be created and accessed if required, but
this is of course not 'pure' FORTH practice.

The Virtual Menory facility in HARTFORTH has two 1024 byte bl ock buffers
that are re-used on a least recently accessed basis. The termnal input
buffer on this system (BLOCK 0) is 80 bytes long and filling it will cause an
automati c ENTER to be generated by the 80'th character.

Both the KEY and EMT words of HARTFORTH are defined as sinmple
secondaries as follows: -

KEY KEY. PRI M TI VE ; : EMT EMT. PRMTI VE ;

HARTFORTH - 12

HARTFORTH - A 79-Standard FORTH Conpi |l er

This allows input and output to be vectored to another device as required by
"ticking' the Code Field Address of a word that drives the required
peri pheral device into the Paranmeter Field of either KEY or EMT. An exanple
of this is shown in Screen 37 where EMT is vectored to the printer. Care
should be taken to store the original Paranmeter Field contents and restore
them after use or communi cation with the system may be | ost.

The HARTFORTH kernel has a function called 'SYS that |eaves on the
FORTH stack the address of the start of the FORTH code. At this address are
found a common set of paraneters at standardised addresses relative to that
returned by 'SYS . A table of these paraneters is given below but further
know edge will be necessary to appreciate the purpose of nost of them

HARTFORTH - 13

HARTFORTH - A 79-Standard FORTH Conpi |l er

0 Junp to initialization routine.

3 Not used by this version of HARTFORTH.
5 Not used by this version of HARTFORTH.
7 Value of HERE if only kernel resident.
9 Val ue used for HERE at initialization.

11 Val ue of FORTH vocabulary link if only kernel resident.

13 Val ue used for FORTH vocabulary link at initialization.

15 Value of VLINK variable if only kernel resident.

17 Val ue of VLINK variable used for initialization.

19 Code Field Address of word executed after programstart, nornally
the disc initialization word for the Virtual Menory file.

21 Pointer to address containing Data Stack address, nornmally H MEM

23 O fset of initial Return Stack address from Data Stack, nornally
512 bytes bel ow the data stack.

25 Spare word for possible future use.

27 Spare word for possible future use.

29 Code Field Address of FORTH word executed after Virtual Menory
file initialization, normally QU T.

31 Length byte of following filename string. If zero then the user
is prompted for the filenane, otherwise the following string is used.

32 File specification (NNNNNNNN XXX. PPPPPPPP: D) used for Virtual Menory
file if SYS+31 is not zero. Maximumlength is 23 bytes.

55 Byt e contai ning processor flags after |ast disk access.

56 Byte containing contents of accumul ator returned after |ast disk
access.

It will be useful to know how the area of free nenory at the top of the

dictionary is used by the system as conflicts here may well occur. The area
at HERE upwards is used by WORD to accept words fromthe input stream and the
address returned by WORD is usually the sane as HERE will return. The area
from PAD (whi ch returns HERE+65) upwards is used by both " and ." to hold the
string of text specified and as the HARTFORTH string functions use PAD as a
temporary storage area conflicts may arise. The print words, including '.'
and 'U.' as well as the nunber conversion words <# # #> build the nuneric
output string fromPAD-1 downwards before EMTting it.

Due to the absence of the square left and right brackets on the TRS-80
keyboard HARTFORTH has to use a non-standard title for the foll ow ng words

"l eft-bracket' becones <(instead of square |left bracket
"right-bracket' becones)> instead of square right bracket
' bracket s-conpil e becones (COWI LE)

A library of standard screens is supplied with HARTFORTH to provide
often used extensions to the |anguage, such as double length and floating
point maths, editing of source screens, string nanipulation, arrays, etc.. A
description of each of these classes of functions is given on the foll ow ng
pages and glossaries of their words are enclosed at the end of the manual,
i ncluding a glossary for 79- STANDARD FORTH.

HARTFORTH - 14

HARTFORTH - A 79-Standard FORTH Conpi |l er

HARTFORTH Error Messages

There are six error messages that HARTFORTH nmay display, in addition to
any of the normal DCS error messages that may be displayed in the event of an
error during an attenpted disc access. These error nessages are detailed
bel ow

Conpi l e error
Bl ock x ABORT

This error occurs if the conpiler finds that the variable STATE is not zero
at the end of interpretation of a block. The nost likely cause is the
omi ssion of a semi-colon fromthe end of a definition. The block nunber 'x

gives the nunber of the source screen being interpreted when the error
occurred. If '"x'=0 then the error was the result of keyboard input.

This error occurs if the conpiler was asked to FORGET <nane> when that nane
was not present in the CURRENT vocabul ary.

Stack error
Bl ock x ABORT

The reason for this error is that the conpiler has found that the stack depth
is less than zero when it has finished conmpiling a block, i.e. nmore itens
have been taken off the stack than have been put on. A barrier area of 32
words is provided to allow for a measure of stack underflow, but gross
underflow can crash the system without giving any error nessage if there is
any operating system code in High Menory. As before the nunber 'x' is the
nunber of the block that caused the error.

Tick error
Bl ock x ABORT

This error occurs if a word that is 'ticked" by the function is not present
in the CONTEXT vocabul ary. As before 'x' is the nunber of the block in which
the error occurred.

HARTFORTH - 15

HARTFORTH - A 79-Standard FORTH Conpi |l er

<name> Structure error
Bl ock x ABORT

This error occurs at the end of a definition, when sem-colon is conpiled, if
a DO ... LOOP/+LOOP, BEAN ... UNTIL/AGAIN, BEGN ... WHLE ... REPEAT, IF

THEN or IF ... ELSE ... THEN structure is incorrectly constructed or
nested. The <name> is the nane of the definition in error, and 'x' is the
nunber of the screen in which it is |ocated.

<name> Word error
Bl ock x ABORT

If a word is referenced either from the keyboard or during conpilation that
cannot be found in the CONTEXT vocabulary then this error occurs and
conpi l ation ceases. As before 'x' is the nunmber of the screen in which the
of f endi ng word may be found.

This is not strictly an error nessage, rather it is a warning that a word
being defined in Block 'x' already exists in the CURRENT or FORTH
vocabul aries, and that the previous definition will not be accessible until
the new definition is FORGOITEN. Conpilation is not interrupted and the new
<name> is correctly conpil ed.

NOTE: Gross stack errors on the Data Stack or incorrectly altering the Return
Stack can crash HARTFORTH w thout warning or error messages. This is a
characteristic of all FORTH systens and is a result of giving the progranmer
the full freedom of the conpiler. Fortunately the elegant structure and
interactive nature of FORTH usually nakes it extrenely sinple to diagnose and
correct the offending definition.

HARTFORTH - 16

HARTFORTH - A 79-Standard FORTH Conpi |l er

Addi ti onal Functions

In the followi ng screen references, the syntax "xx/yy" relates to the
Model 1/111 screen number (xx) followed by the TRSDOS 6.x screen nunber (yy).
The FORTH kernel includes sone extra functions over and above those required
by the 79- STANDARD. These functions are docunented in the glossary and are in
general self-explanatory. The mmjor enhancenents are the words that enable
access to other files via the normal docunmented TRSDOS operating system
calls, but to use themw Il require some technical appreciation of how to use
these calls. On screen 28/36 there are a few additional functions, defined in
FORTH, that conpl enent these system calls.

IN and QUT are supplied to enable access to the input/output ports of
the Z80 CPU and sone 32 bit arithmetic functions are provided as primtives
to speed up extended length arithmetic, such as the floating point functions.

A string literal " is provided as it seened an obvi ous om ssion fromthe
standard, and it should be noted that if executed directly, i.e. used outside
a definition, then the address returned will be PAD. If conpiled the address
used will be that of the position of the string's length byte in the

dictionary. The value of this length byte is used by HARTFORTH to junp over
the string while executing a definition that uses " and so it is inportant
that this value is not changed after conpilation, by storing another string
there for example. The word DOS is provided to flush any updated Virtual
Menory buffers to disc and then close the Virtual Menory file and re-enter
the DOS by means of the EXIT SVC call. A constant, VMDCB, is provided that
retains the address of the first byte of the Virtual Menory file Control
Bl ock and may be useful for advanced users.

Screen 13/ 20

This screen is mainly a conment screen that holds the index of the usage
of HARTFORTH screens. It also contains the definition of the FORTH word | NDEX
whose job is to send the contents of screen 13/20 to the display.

Screens 14-15/21-22

Not all the words on these screens will be described here, the functions
of the sinpler ones which are not, may be found fromthe gl ossary of words of
the screens. This applies also to the descriptions of the other screens as
the function of these descriptions is to give an overview and sone useful
detail about the major functions of each screen.

It is inmportant to realize the purpose of the words FORGET-SYSTEM and
SAVE- SYSTEM They are intended to be wused in conjunction wth RESTART,
NEW FI LE, TO MEMORY and TO DI SC to provide a suite of functions to ease the
generation of new HARTFORTH files. Wien FORGET-SYSTEM is invoked it will trim
off all the words that have been conpiled from screen 13/20 onwards and will
| eave only a 79- STANDARD kernel with the additional words that are supplied
in the kernel. This enables a new HARTFORTH to be conpiled with only the
functions present that any particul ar programrequires.

The function of SAVE-SYSTEM is to save a nenory image of the current
system that is |oadable by the DOS, in the first blocks of the current
Virtual Menory file. It asks if the entire systemis to be saved. If the "N
key is pressed then only the kernel as left by FORGET-SYSTEM is saved to
disc, the nenory being unchanged. After saving the nmenory image it wll

HARTFORTH - 17

HARTFORTH - A 79-Standard FORTH Conpi |l er

di splay the nunber of blocks it has used. Be careful that sufficient roomis
left at the beginning of a Virtual Menory file if you are going to save a
menory inmage as SAVE-SYSTEM will not care about overwiting a screen if it
needs to. You do not need to save to the same file as you have conpiled from
of course, this is the reason that RESTART is provided to change the Virtual
Menory file for another.

TO MEMORY al l ows a range of screens to be read fromthe current Virtual
Menory file and held in the spare nmenmory from PAD upwards. The intention is
that this is done prior to a RESTART to define a new Virtual Menory file and
then the word TO DISC can be used to store these screens in the new file.
Note that these two words are in the EDI TOR vocabul ary and therefore ED TOR
needs to be invoked after a RESTART because RESTART sets CONTEXT to FORTH.

The word BOOT is provided as a convenience to |load the screens that are
required for a given application; you can change it to suit yourself. The
sequence of commands FORGET- SYSTEM 14/21 LQOAD BOOT will forget the entire
systemand then reinstate it in the formin which you received it.

Screen 16/ 23

This screen contains a deliberately extrenely limted Assenbler for
reasons that are explained in the glossary. It would of course be easy to
provide a nore conplete Assenbler, and in fact Loeliger gives a design for
one in his book Threaded Interpretive Languages. However FORTH Assenblers
tend to bear little resenblance to the native Assenblers for a processor
because they normally rely on FORTH s stack to make their inplenmentation easy
and so have a Reverse Polish type of notation with the op-code after the
operands. To people who al so use the native Assenblers this can be very error
prone and coding in Hex for the very mnor anounts of nachine code that nost
FORTH prograns do (should!) have is quite easy. There are several exanples of
the use of the Assenbler in a variety of these screens. In the Mdel 4
versi on, however, screens 67-71 contain a very advanced facility that is far
nmore useful than an Assenbler and takes up less space in the dictionary. It
is termed a Native Code Cenerator and produces actual machi ne code sequences
when invoked but using normal FORTH syntax so that additional execution speed
may be obtai ned when required without needing to be able to wite in Assenbly
code. This utility is nmore conpletely described later.

Screen 17/ 24

The terminal and print functions here are adequately detailed in the
gl ossary, as are the useful control functions CASE: and SWTCH . These two
functions allow multi-way branching decisions to be taken with execution
continuing in-line once the word branched to conpl etes.

HARTFORTH - 18

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screens 18-20/ 25-28

The EDI TOR vocabul ary contains both a screen editor invoked by the word
VI EW as explained in the FORTH CVD section of this manual, and also a set of
words that will manipulate full screens. By this neans blocks may be noved
around and shuffled to suit your needs. If you need to copy screens from one
Virtual Menory file to another they may be brought into nmenory using
TO MEMORY, the Virtual Menory file changed by using RESTART, and then the
screens saved in the new file by using TO DI SC.

By convention the first line of a FORTH screen contains a title for that
screen and the word I NDEX (which is defined differently in the EDITOR than in
FORTH) will print out the first line only of a range of screens. Be careful
when using MOVE. UP and MOVE. DOMN that the screens that will be overwitten do
not have valuable information on them as these words make no check whether
the screens are enpty.

The screen editor word VIEW also supports line editing as well as
character editing and so the ED TOR vocabulary as a whole contains all that
you need to create and maintain your FORTH program screens and Virtual Menory
files.

Screen 21/ 29

The word DUMP that is provided on this screen is a facility that enables
an area of nenory to be displayed in both ASCII and HEX form w thout
affecting the present setting of BASE. The display will always be in conplete
lines of 16 bytes, with a nmarker in the first line over the actual byte at
the address that you gave. The words 'STAX and 'STAX?' on this screen are in
the gl ossary as general utility words as is 'DUVW itself.

Screens 22-23/30-31

On these screens are provided the recomended 79- STANDARD DOUBLE NUMBER
STANDARD EXTENSI ON word set that provides 32 bit operations together wth
some additional words to provide conversion between different word | engths on
t he stack.

Screen 24/ 32
Here are provided a set of array definitions for arrays of different

word lengths. There is no nechanism for checking array bounds so it is as
well to add checking, at |least during developnent, as witing outside an

array boundary will danage other parts of the dictionary - probably causing
the systemto crash. These words are exanples of the use of ; CODE and CREATE
DCES>.

Screen 25/ 33
A set of string manipulators are defined in this screen and should

provide nost, if not all, of the string handling facilities that any
application may need.

HARTFORTH - 19

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screens 26-28/ 34-36

Wrds to control the cursor of the TRS-80 display are defined here,
together with a set of words to access the graphic characters and to draw
hori zontal and vertical |ines.

The disk words defined build on the DOS calls inplemented in the
HARTFORTH kernel and sonme study of them should indicate their use, which is
illustrated in the inportant word NEWFILE which is used to pre-create
Virtual Menmory files of any required length. The word DO SVC allows the
advanced user access to the SVC calls of TRSDCS 6. x.

Screen 29/ 37

If you have a printer the words on this screen will provide you wth
some ready-made words to format output. Note however that HARTFORTH is
designed to enable the KEY and EMT words to be vectored to other drivers and
there is an exanple of this on this screen that vectors EMT to the printer
using the PEMT primtive.

Screen 30/ 38

The sinple words on this screen provide the capability of generating a
pseudo-random nunber sequence by a standard mathematical algorithm To avoid

generating the sane sequence every tinme, the word RANDOM ZE w Il vary the
sequence by changing the SEED value by generating and discarding an
i ndeterm nate nunber of random values. This indeterm nate, but not

necessarily truly random nunber is obtained by reading the refresh register
of the Z80 processor.

Screens 31-35/39-43

The facilities provided here are intended to aid in the debugging of
progranms, and are hopefully self-explanatory with the possible exception of
DEBUG DEBUG is neant to be conpiled into a definition and when invoked,

perhaps conditionally on the occurrence of a fault, wll enter the outer
interpreter where you can exam ne variables and the stack to try to establish
the cause of an error. The word RESUME will then continue from where the

program was interrupted, but only if the nunber of itens on the stack and the
setting of HERE have not changed. DEBUG on entry stores the values of sone
critical paraneters and restores them on exit; however it is possible that
other paraneters critical to the operation of the program m ght be altered,
so some care is needed. As the ABORT function is not disabled a typing error
at the keyboard may cause a HARTFORTH error that causes an ABORT. It is then
not possible to RESUME as all the stacks are reset so again care needs to be
taken before pressing the <ENTER> key to ensure that no mstake has been
made.

HARTFORTH - 20

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screens 36-41/44-49

These six screens provide a very full set of floating poi nt
mani pul ations that provide results accurate to eight decimal digits. The
gl ossary contains a description of the format used to represent a floating
poi nt nunmber but a few notes on the purpose of sone of the functions will be
gi ven here.

Normally a floating point nunber is six bytes long and is stored and
recalled using F!' and F . Functions FPACK and FUNPACK are defined to pack a
nunber into four bytes and unpack it again so allowing it to be stored and
recall ed by the double number functions 2 and 2! if it is required to save
storage space because of nenory limtations. The accuracy is however reduced
to five or six decinmal places and the constant F.LEN should be 'ticked to a
value of five if FPACK and FUNPACK are in use. As this packing reduces the
exponent to eight bits and stores it at the bottom of the mantissa it is not
possible to PACK a nunber whose exponent is less than -128 or greater than
128. FPACK checks for this and as witten will ABORT. However this can of
course be changed to take sonme application specific action if required.

Besi des all the arithmetic and |ogical operators sonme scientific
floating point conversions are provided. Note that the scientific notation
adopted is that of single length integer representing the deci mal exponent on
the top of the stack, with a double length integer under it which represents
the mantissa. These are provided to make it easier to enter floating point
words fromthe keyboard if required.

Screens 42-44/*** [Not avail able for TRSDOS 6. x version]

Sone benchmarks, that should not necessarily be taken too seriously as
with all benchmarks, are given in these three screens. Probably the ones of
nost interest are those that are translations of the Personal Conputer Wrld
magazine as these show that HARTFORTH is about ten tines faster than
interpreted BASIC. The tines are obtained wi thout "cheating". As variables
are used they are fetched and stored each tinme whereas a real FORTH program
woul d probably nmake nore use of the stack. Also |arge BASIC prograns run nore
slowy than small ones as GOIGs and GOSUBs have to search the programto find
their destination, and variable references have to search the variable
tables. This is why it pays in a BASIC program to use the nost often
referenced variables first to ensure that the search for themis short, and
to put sub-routines at the front of a program FORTH, on the other hand, runs
at constant speed irrespective of the size of the program as all references
are conpil ed.

Screens 45-47/50-52

These screens give a denonstration of a HEAPSORT which is one of the
faster of the sorting algorithns and may be useful to you. The denonstration
consists of two words. The first, DOT, wites a set of random nunbers to the
menory at 2600H and sorts them into ascendi ng order. The second, | NVERSE,
wites an inverted sequence starting at 255 down to O to the nenory and then
inverts the sequence. To conpile these screens you will first need to compile
screen 38 which contains the random nunber words. The result of the sort may
be viewed by DUWP or the menory Editor utility.

The words DO HEAP and HEAPSORT do a byte sort on an array whose address
is returned by the word ELEMENT which takes a nunber from the stack

HARTFORTH - 21

HARTFORTH - A 79-Standard FORTH Conpi |l er

representing the index into an array and returns the address of that el enent
of the array. The array in this case is the display screen nenory, so that
you may see the sort progress. Note that the HEAPSORT al gorithm assunmes that
the |l owest index of an array is 1 whereas the array words of screen 32 use O
as the lowest index. Therefore if the sort is to be nodified for sone other
use the redefinition of ELEMENT should correct for this, or the sort wll not
reach the first element of the array. The algorithm uses a single working
store whose address is returned by WORKI NG

It should be quite sinple to redefine ELEMENT to suit your own purposes
and change WORKING (if necessary) to suit the type of value you wish to sort
(byte, word, double-word, floating point, string). The C and C
associated with each ELEMENT and WORKING wi |l al so need changing, as will the
conparisons used to make the sorting decisions. A bit of study of the
algorithm not to understand how it works but to see where it fetches, stores
and conpares, should enable you to make the required changes. Assum ng that
lines are nunbered fromO to 15 the follow ng |ines may need changi ng: -

Screen 45/ 50:
Line 1 - redefine WORKI NG and NO. | TEMB
Line 2 - redefine ELEMENT;
Line 9 - C and C

Line 11 - C, C and <
Line 13 - C, C and <
Line 14 - C, C
Line 15 - C, C

Screen 46/ 51:
Line 8 - C, C
Line 11 - C, C
Line 12 - C, C

Screens ***/53-55 [Not avail able for NModel 1/111]

These three screens contain sone advanced code to interface FORTH to the
TRSDOS interrupt task processor nmechanism |If you LOAD these three screens
and i nvoke I NSTALL then you will hear a "click"” approximtely once per second
as the FORTH word INTERRUPT is executed as a nmedium priority task in task
slot 0. The word UNSTALL will renove the task.

To use this facility you need not understand how the code works but
nmerely need to redefine I NTERRUPT to invoke your required task. Be aware that
if your task occupies too nuch tinme you will not be able to access the discs
and if it occupies far too much time then the system will seem to | ock-up.
Also beware of all the usual interrupt problens of referencing the same
variables etc. at interrupt as well as background | evel.

HARTFORTH - 22

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screens ***/56-62 [Not avail able for NModel 1/111]

These screens contain three Editors that are LOADed into the ED TOR
vocabul ary. They are MED TOR for displaying and patching nenory contents,
FEDI TOR for displaying and patching files on disk and SED TOR for displaying
and patching disc sectors directly.

SEDITOR is intelligent enough to know when you are accessing the

directory and will re-wite a directory sector with the correct Data Address
Mar k.

FEDI TOR cannot tell if it has read a directory or an ordinary sector and
will re-wite all sectors with the normal Data Address Mark; so, although

FEDI TOR may be used to examine DIR/SYS it nust not be used to patch it — use
SEDI TOR i nst ead.

Screen ***/63 [Not available for Mdel 1/111]

This screen contains a nore sophisticated floating point input routine
than that provided in the floating point package. This version of F IN wll
accept input fromthe keyboard in the forns xxxx , XX.XX or XXxExx.

Screen ***/64 [Not available for Mdel 1/111]

This screen contains a nore sophisticated floating point output routine
than that provided in the floating point package. Nunmbers whose absolute
value is smaller than 1,000,000 or larger than 0.001 are printed as a m xed
nunber with the nunber of digits defined by the constant F.LEN in the
floating point package. Values outside this range are printed in scientific
notation, again with the nunber of digits defined by F.LEN

Screens ***/65-66 [Not avail able for NModel 1/111]

One problemwith FORTH is that the source code is held on screens in the
Virtual Menory file and this tends to be fairly wasteful of disc storage
space unless the words are packed in tightly, and then the code becones
unreadabl e. This waste of space also discourages adequate commenting of the
source code. For those with large progranms but limted disc storage this can
be troubl esone. These two screens all ow FORTH source code to be LOADed from a
word processor file such as SCRIPSIT. This is done by patching the definition
of the FORTH word WORD that is used to accept the next word from the input
stream ABORT is also patched so that things are restored to normal if an
error occurs. The loader is invoked by typing "WP.LQAD fil ename"” which alters
WORD and ABORT, opens the word processor file and sets BLK=0. Every tine a
new |line character (13) is encountered BLK is increnented and if an error is
encountered the block nunber printed is the line nunber that contains the
error. Any other control characters are ignored except 0O which term nates the
| oadi ng sequence and restores WORD and ABORT to their original functions. As
LOADIing is termnated when a 0 is encountered the word processor file used
shoul d use this as a termnating character.

HARTFORTH - 23

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screens ***/67-71 [Not avail able for NModel 1/111]

These screens contain a very advanced utility whose purpose is to
replace the use of a normal FORTH Assenbl er where the speed of machine code
is necessary. The purpose of this wutility is to generate machine code
sequences that enulate the action of normal FORTH words thus giving the
conveni ence of witing high-level FORTH code with the increased speed of an
Assenbl er. As always there is a conpronmise to be nade, and in this case it is
that the machi ne code generated occupies nore nenory than the equival ent high
| evel FORTH code - however this is also true of a FORTH Assenbler. The
particul ar advantage of this Native Code Cenerator over an Assenbler is that
it occupies the sane, or less, space in the dictionary but nost inportantly
it offers the fam liar FORTH syntax and thus requires no know edge of the Z80
processor to achieve the benefits of Assenbly coding.

Al though the source code on the screens may appear daunting the use of
the utility is very sinple as the exanple screens following will show The
only words whose functions are necessary to understand are: -

:CODE , (COMPILE) , LITERAL , <(,)> and ;

Apart from :CODE the others are re-definitions of FORTH words whose actions
are closest to those required by this code generator.

The code generator is actually in the ASSEMBLER vocabul ary and :CODE
performs the sane function as : in that it generates the header of the
definition in the dictionary but then instead of setting STATE=1 as : does it
transfers control to the code generator. The code generator is thus running
in execute node (STATE=0) rather than conpile nbde and its function is to
identify words that generate sequences of nmachine code in the definition
created by :CODE and execute them The words that are recognized by the code
generator are all contained in the Stack Manipul ation, Conparison, Arithnetic
and Logical, Mnory and Control Structure groups as well as nunbers valid
with regard to the current setting of BASE. Wrds not inplenented are
EXECUTE, LEAVE, DEPTH and NOT (which is the sane as O=) and the double |ength
words D<, D+, DNEGATE, */, U*, U MOD.

Additional words are 2* and /2 which are self-explanatory, and IN and
QUT which are equivalent to the IN and QUT defined in the HARTFORTH ker nel .

In order to speed up fast |oops a new | oop count nechanismis provided.
Because the loop counter is kept in registers B and C of the Z80 this
mechani smis not nestable.

The word ; is redefined in the code generator so that it may be used to
termnate : CODE definitions. Wen invoked it checks that there have been no
control structuring errors and that the stack depth is the sane as it was
when :CODE was invoked; note that a stack error can also be caused by a
structuring error. The code generator may give the following errors:

HARTFORTH - 24

HARTFORTH - A 79-Standard FORTH Conpi |l er

Code CGenerator Word error in Xxx

This signifies that a word is invoked in the :CODE definition of xxx
that is not inplemented in the code generator.

Code Cenerator Conpile error in xxx

This signifies that a stack or control structure error exists in the
: CODE definition of xxx.

Code Cenerator Structure error in XXX

This signifies that a stack or control structure error exists in the
: CODE definition of xxx.

Code Cenerator Stack error in Xxx

This signifies that the depth of the stack when the ; of the definition
of xxx is different to the depth when : CODE was i nvoked. Note that this means
that wunlike high level FORTH you cannot pass paraneters into a definition
using the stack but can use <(and)> followed by LITERAL to achi eve the same
effects.

It is useful to be able to invoke a high level FORTH definition from
within the Code Generator and the redefinition of (COWILE) allows this by
conpi ling a machine code sequence that will execute the foll owi ng word which
(COWILE) will FIND in the CURRENT or FORTH vocabularies. If the word is not
found, the first error nessage above is given. Note that |MVED ATE and
CREATE. . . DCES> words and any other words that have both a conpile and a run-
time action cannot be invoked, e.g. ." because the code generator is
executing with STATE=0. To use such words it is necessary to invoke them by a
normal colon definition and then reference this definition using (COWILE) as
with the PRINT function in the sieve of Eratosthenes exanple screen.

It is inportant to be able to reference constants and variables and
perhaps perform conpile tinme address calculations. The word <(wll suspend
code generation and will allow words in the CURRENT or FORTH vocabul aries to
be executed, normally to | eave a nunber or nunbers on the stack, invoking)>
will then re-activate the code generator and the word LITERAL may be used to
take the nunber fromthe stack and create a code sequence to return it to the
stack at run-tinmne.

Pl ease take note that the code generator is intended for use only to
speed up time critical parts of FORTH code, say interrupt words or inner
loops. It is not nmeant as a general purpose programring tool. Program in
FORTH, tune your FORTH with the code generator!

Screens ***/72-73 [Not avail able for NModel 1/111]
Screen 72 contains a colon definition of the well-known sieve of

Er at ost henes benchmark and screen 73 is the :CODE definition of the sane
al gorithm denmonstrating (COWPILE), <(,)> and LI TERAL.

HARTFORTH - 25

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screens ***/74-76 [Not avail able for NModel 1/111]

These screens contain a :CODE definition of the HEAPSORT algorithm to
denonstrate the code generator.

Screen ***/77 [Not available for Mdel 1/111]

It may be that you wish to change the Virtual Menory file fromwthin a
program wi t hout doing a RESTART which will only accept the new name from the
keyboard. This screen contains the code to show you how to do it. As shown it
is invoked by typing "VMFILE filenane" but the '32 WORD phrase in line 3
could be replaced by a string function that returns the address at which the
filename can be found and the error trapping could take sone application
speci fic action.

Screens 48-53/78-80

These are six/three spare screens.

FORTH 79 St andard Ref erences

Stack inputs and outputs as shown; top of stack on right. See operand key at
bott om

Stack Mani pul ati ons

DUP n->nn Duplicate top of stack.

DROP n-> Di scard top of stack.

SWAP nl n2 ->n2 nl Exchange top two stack itens.

OVER nl n2 ->nln2nl Make copy of second itemon top.

ROT nl n2 n3 ->n2 n3 nl Rotate third itemto top.

Pl CK nl -> n2 Copy nl-th itemto top.

ROLL n-> Rotate n-th itemto top.

?DUP n->n(n) Duplicate only if non-zero.

>R n-> Move top itemto "return stack” for
tenmporary storage (use caution).

R> ->n Retrieve itemfromreturn stack.

R ->n Copy top of return stack onto stack.

DEPTH ->n Count nunber of itens on stack.

HARTFORTH - 26

HARTFORTH - A 79-Standard FORTH Conpi |l er

Conpari sons
< nl n2 -> flag True if nl |less than n2.
= nl n2 -> flag True if top two nunbers are equal.
> nl n2 -> flag True if nl greater than n2.
0< n->flag True if top number negative.
= n->flag True if top number zero.
(Equi val ent to NOT).
0> n->flag True if top nunmber greater than zero.
D< dl d2 -> flag True if dl1 |l ess than d2.
< unl un2 -> flag Conpare top two itens as unsigned
i ntegers.

NOT flag -> not flag Reverse truth value. (Equivalent to 0=)
Oper and key:

d, di,... 32-bit signed nunbers

addr, addrl,... addresses

char 7-bit ASCI1 character val ue

n, nl,... 16-bit signed numbers

u unsi gned

byte 8-bit byte

flag bool ean fl ag

Arithmetic and Logi cal

+
D+

1+
1-
2+
2-

*

/

MCD

/ MOD
*/ MOD

*/
U
U MOD
MAX

M N
ABS

nl

nl

ud

nl n2 -> sum Add.

dl d2 -> sum Add doubl e- preci si on nunbers.

ni n2 -> diff Subtract (nl - n2).

n -> n+l Add 1 to top nunber.

n -> n- Subtract 1 fromtop nunber.

n -> n+2 Add 2 to top nunber.

n->n-2 Subtract 2 fromtop nunber.

nl n2 -> prod Mul tiply.

nl n2 -> quot Divide (nl/n2). (Quotient rounded
toward zero)

nl n2 -> rem Modul o (i.e. remainder from division
nl/n2). Remnai nder has sane sign as nl.

nl n2 -> rem quot Di vi de, giving remai nder and quoti ent.

n2 n3 -> rem quot Mul tiply, then divide (nl*n2/n3),
wi t h doubl e- preci sion internediate.

n2 n3 -> quot Li ke */MOD, but give quotient only,
rounded toward zero.

unl un2 -> ud Mul tiply unsigned nunbers, | eaving
unsi gned doubl e-precision result.

un -> urem uquot Di vi de doubl e nunmber by single, giving
remai nder and quotient, all unsigned.

nl n2 -> nmax Leave greater of two nunbers.

nin2 ->mn Leave | esser of two nunbers.

n->1nl Absol ut e val ue.

HARTFORTH - 27

HARTFORTH -

NEGATE
DNEGATE

AND

XOR

Menmory

c

+
MOVE

CMOVE

FI LL

Control Structur
DO. .. LOCP do:
)

LEAVE

DO .. +LOOP do:

n->-n
d->-d

nl n2 -> and
-> or
-> xor

nl n2
nl n2

addr

->

n addr
addr -> byte
n addr

addr

->

n addr

addr1l addr2 n->

n

->

->

->
addr1l addr2 n->

addr n byte ->

es

end+1 start

-> | ndex
-> | ndex

->

+l oop:

IF...(true)...THEN

If...(true)...EL

SE

...(false)...THEN
until:
whi | e:

BEGA N. .. UNTIL

BEG N...VWH LE
... REPEAT

EXIT

EXECUTE

addr

if:
if:

->

limt start

n->

flag ->
flag ->

flag ->
flag ->

->

->

A 79- St andard FORTH Conpi l er

Leave two's conpl enent.

Leave two's conpl enent of
doubl e- preci si on nunber
Bitwi se | ogi cal AND.

Bitwi se | ogical OR

Bi twi se | ogi cal exclusive-OR

Repl ace address by nunber at address.
Store n at address.

Fetch | east significant byte only.
Store least significant byte only.
D spl ay nunmber of address.

Add n to nunber at addr.

Move n nunbers starting at addrl to
menory starting at addr2, if n>0.
Move n bytes starting at addrl to
menory starting at addr2, if n>0.
Fill n bytes in menory with byte
begi nning at addr, if n>0

Set up | oop, given index range.

Pl ace current |oop index on data stack
Return i ndex of next outer loop in
sane definition.

Terminate | oop at next LOOP or +LOCOP,
by setting limt equal to index.

Li ke DO ..LOOP, but adds stack val ue
(instead of always 1) to index.

Loop term nates when index is greater
than or equal to limt (n>0), or when
index is less than limt (n<0).

If top of stack true, execute.

Sane, but if false, execute ELSE cl ause.

Loop back to BEG N until true at UNTI L.
Loop while true at WH LE; REPEAT | oops
unconditionally to BEG N

Wien fal se, continue after REPEAT

Termi nate execution of colon definition
(May not be used within DO ..LOCP.)
Execute dictionary entry at conpilation
address on stack (e.g. address returned
by FI ND).

HARTFORTH - 28

HARTFORTH -

Term nal | nput - Qut put

CR

EMT
SPACE
SPACES
TYPE
COUNT

- TRAI LI NG
KEY

EXPECT

QUERY

WORD

->

char ->
->

n->

addr n ->

addr -> addr+1 n

addr nl1 -> addr n2

-> char
addr n ->
->

char -> addr

Nuneri c Conver si on

BASE

DECI MAL

CONVERT

HOLD
SIGN

-> addr

->
n->

un ->

dl addrl -> d2 addr2

->
udl -> ud2

ud -> 00

char ->

n->
d -> addr n

Mass Storage | nput/ Qut put

LI ST

n->

A 79- Standard FORTH Conpi l er

Do a carriage return and |line feed.
Type ASCII val ue from st ack.

Type one space.

Type n spaces, if n>0.

Type string of n characters

begi nning at addr, if n>0.

Change address of string (prefixed by
I ength byte at addr) to TYPE form
Reduce character count of string

at addr to omt trailing blanks.

Read keyboard and | eave ASCI | val ue

on stack.

Read n characters (or until carriage
return) fromtermnal to address, wth
null (s) at end.

Read line of up to 80 characters from
termnal to input buffer

Read next word frominput stream using
char as delimter, or until null. Leave
addr of length byte.

System vari abl e contai ni ng radi x

for nuneric conversion

Set deci mal nunber base.

Print nunber with one trailing

bl ank and sign if negative.

Print top of stack as unsi gned

nunber with one trailing bl ank

Convert string at addrl+l to double
nunber. Add to dl1 | eaving sumd2 and
addr2 of first non-digit.

Start nunmeric output string conversion
Convert next digit of unsigned double
nunber and add character to out put
string.

Convert all significant digits of

unsi gned doubl e nunber to output string.
Add ASCI| char to output string.

Add m nus sign to output string if n<O.
Drop d and term nate numneric out put
string, leaving addr and count for TYPE

Li st screen n and set SCR to contain n

HARTFORTH - 29

HARTFORTH -
LOAD n->
SCR -> addr
BLOCK n -> addr
UPDATE ->
BUFFER n -> addr
SAVE- BUFFERS ->
EMPTY- BUFFERS ->
Def i ni ng Wor ds

XXX ->

: ->
VARI ABLE XxxXx ->

XXX: -> addr
CONSTANT xxXx n->

xxx: (->n)

VOCABULARY XXX ->

CREATE. . . DCES> does

Vocabul ari es

CONTEXT ->
CURRENT ->
FORTH ->
DEFI NI TI ONS ->
'OXXX ->
FI ND ->
FORGET xxx ->

: -> addr

addr

addr

addr

addr

A 79- St andard FORTH Conpi l er

Interpret screen n, then resune inter-
pretation of the current input stream
System vari abl e cont ai ni ng screen nunber
nmost recently listed.

Leave nenory address of bl ock, reading
frommass storage if necessary.

Mark | ast bl ock referenced as nodifi ed.
Leave addr of a free buffer, assigned to
bl ock n; wite previous contents to mass
storage if UPDATEd.

Wite all UPDATEd bl ocks to nass

st or age.

Mark all buffers as enpty, without
writing UPDATEd bl ocks to nass storage.

Begi n col on definition of xxx.

End col on definition.

Create a two-byte vari abl e nanmed xxx;
returns address when execut ed.

Create a constant naned xxx with val ue
n; returns val ue when execut ed.

Create a vocabul ary named xxx; becones
CONTEXT vocabul ary when execut ed.

Used to create a new defining word, with
execution-time routine in high-leve
FORTH.

System vari abl e pointing to vocabul ary
where word nanes are searched for.
System vari abl e pointing to vocabul ary
where new definitions are put.

Mai n vocabul ary, contained in all other
vocabul ari es. Execution of FORTH sets
cont ext vocabul ary.

Sets CURRENT vocabul ary to CONTEXT
Find address of xxx in dictionary; if
used in definition, conpile address.
Leave conpil ation address of next word
in input stream If not in CONTEXT or
FORTH, |eave O.

Forget all definitions back to and

i ncl udi ng xxx, which nmust be in CURRENT
or FORTH.

HARTFORTH - 30

Conpi | er

ALLOT

| MMEDI ATE

LI TERAL

STATE

<(

)>

COWPI LE
(COVPI LE)

Note: The <(,

synbols due to the |ack of

keyboar d.

M scel | aneous
(

HERE

PAD

>| N

BLK

ABCRT

QT
79- STANDARD

HARTFORTH -

n->
n->

)> and (COWPILE) are slightly different
the necessary square bracket keys on the TRS-80

-> addr

-> addr

-> addr

-> addr

A 79- Standard FORTH Conpi l er

Conpi l e a nunber into the dictionary.
Add n bytes to the paraneter field of
the nost recently defined word.

Print nessage (termnated by "). If used
in definition, print when executed.

Mark | ast-defined word to be executed
when encountered in a definition, rather
t han conpil ed.

If conpiling, save n in dictionary, to
be returned to stack when definition is
execut ed.

System vari abl e whose val ue is non-zero
when conpil ation is occurring.

Stop conpiling input text and begin
execut i ng.

Stop executing i nput text and begin
conpi | i ng.

Conpi |l e the address of the next
non- |1 MVEDI ATE word into the dictionary.
Conpile the foll owi ng word, even if

| MVEDI ATE

from the 79- STANDARD

Begin coment, term nated by) on

sanme |ine or screen; space after (.
Leave address of next available
dictionary location

Leave address of a scratch area of at

| east 64 bytes.

System vari abl e contai ni ng character

of fset into i nput buffer used,

e.g. by WORD.

System vari abl e cont ai ni ng bl ock nunber
currently being interpreted

or O if fromtermnal.

Clear data and return stacks, set exe-
cution node, return control to term nal
Li ke ABORT, except does not clear data
stack or print any nessage.

Verify that system conforns to

FORTH- 79 St andar d.

HARTFORTH - 31

HARTFORTH - A 79-Standard FORTH Conpi |l er

Addi tional Wrds in FORTH Ker nel

NFA nl -> n2) Return Nane Field Address n2 given Code
Fi el d address nl.

CFA nl -> n2 Return Code Field Address n2 given Nane
Fiel d Address nl.

IN nl -> n2 Leave contents n2 of 1/0O port nl.

aJutr nl n2 -> Qutput nl to port n2.

BEG N. .. AGAI N -> Uncondi tional formof BEGQ N. ..UNTIL.
Equi val ent to O UNTIL.

| NTERPRET -> Begin interpretation of bl ock nunber
in BLK

SEND n-> Equiv. to COUNT foll owed by TYPE

HEX -> Set BASE to 16. Equivalent to
DECI MAL 16 BASE !

SYS ->n Returns address n of start to give
access to certain paraneters.

H ->n Vari abl e used to store HERE.

"oxxx" -> String literal. Returns address of
I ength byte of string xxxx.

DU* udl ud2 -> ug Mul ti ply unsigned doubl e nunbers
| eaving quad result.

DU/ MOD ug ud -> udrem udquot Di vi de quad nunber by doubl e,
bot h nunbers assuned unsi gned.

D- dl d2 -> diff Subtract (d1 - d2).

DCS -> Fl ush any updated buffers to disk,
close VWMfile, enter DCS.

VM DCB ->n Return address n of first byte of
VM file DCB.

The following words invoke DOS standard file handling routines. The | ogical
record length of all transactions is 256.

ERROR flag -> flag+192 Di spl ay DCS error nessage. Flag
is DOS error nunber.
VRI TE dcb -> flag Wite and verify a sector.
Flag = 0 if no error occurred.
READ dcb -> flag Read a sector.
INIT buffer, dcb -> flag Qpen or create a file.
OPEN buffer, dcb -> flag Open an existing file.
CLCSE dcb -> flag Cl ose an open file.
Kl LL dcb -> flag Kill an open file.
PCSN Irn dcb -> flag Position to read or wite a sector.
dcb - is address of 32 byte area for DOS to use.
buffer - is address of 256 byte area for DOS to read/wite disk sector.
[rn - is logical record nunber of sector to be read or witten.

HARTFORTH - 32

HARTFORTH -

A 79- Standard FORTH Conpi l er

Ceneral Uility Wrds (In FORTH Vocabul ary)

DOS ->
CURRENT? ->
CONTEXT? ->

BASE? ->

VLI ST ->
FORGET- SYSTEM ->

SAVE- SYSTEM ->
RESTART ->

LOADS nl n2 ->
BOOT ->

STAX ->nl n2
STAX? ->

DUMP unl un2 ->
Assenbl er: FORTH Vocabul ary
CODE xxX ->

; CODE ->

LABEL xxx ->

XXX ->n

Save buffers and re-enter DCS.

Print name of CURRENT vocabul ary.

Print name of CONTEXT vocabul ary.

Print current BASE in decinal

Di spl ay name of all words in CONTEXT
vocabul ary. Pressing any key will
temporarily stop/start the |listing.

Used to clear the entire dictionary.

W1l save either a fully conpiled system
or a basic systemto the first bl ocks of
the VMfile in TRS-80 | oad fornmat.

WIIl restart FORTH at the Virtual Menory
file query but will retain the system
intact thus allow ng a system conpiled
fromone file to be stored in another

W11l 1 oad n2 bl ocks comrencing with
bl ock n1.
W11l |oad resident system bl ocks.

Leave current data stack pointer nl
and return stack pointer n2.

Print current values of data and
return stack pointers.

D splay nmenory contents from
address unl for un2 bytes.

Create dictionary entry for follow ng
<nanme>. Set ASSEMBLER as context vocab-
ulary. BASE is stored and reset to hex.
Terminate a definition, set ASSEMBLER as
cont ext vocabul ary. Wen definition is
execut ed the code sequence foll ow ng

; CODE wi || be invoked. BASE is set to
hex. On entry to the definition DE
contains the address of the paraneter
field of the word

Create a header and enter ASSEMBLER
vocabul ary.

Normal | y used for nachi ne code sub-
routines to be called by words defined
by CODE. Invoking xxx puts the address
of the subroutine on the stack

HARTFORTH - 33

HARTFORTH - A 79-Standard FORTH Conpi |l er

Assenbl er: ASSEMBLER Vocabul ary

C byte -> Take byte fromstack and put in dic-
tionary advancing HERE. |If word on stack
not a byte value i.e. >255, then Abort
giving error nessage.

END- CODE -> Term nat e code sequence with JP (1Y)
then set context vocabulary to current
vocabul ary and restore BASE to its
previ ous val ue.

The ASSEMBLER offered is deliberately limted to the entering of hand-

assenbled hex code using ',' and 'C'. The facilities it offers should be
entirely adequate for nobst necessary purposes. The restriction of facilities
is to avoid the syndronme of wusing a high-level |anguage to provide an

assenbler to overcone the limtations of the high-level |anguage to make it
run as fast as possible. The language is for inplenentation, the assenbler
for fine-tuning, not vice-versal

Addi tional Control Functions

CASE: xxx -> Used to create dictionary entry for
foll ow ng <nane> and conpil e execution
XXX n-> addresses of words follow ng <nane> into

<nane' s> body. Wien <nane> i s executed
the word n fromthe stack is used as an
i ndex into the followi ng words (0O gets
first of list, 1 gets second, etc.) to
choose which one to execute. After that
word term nates execution continues with
the next word after xxx. No checks are
made on val ue of index. Beware of
crashing the systemif n is negative or
larger than the list allows; e.g. CASE
CHOOSE ZERO ONE TWD THREE ; defi nes
CHOOSE. Entering 1 CHOOSE will cause ONE
to be execut ed.

SWTCH xxx -> Used to create dictionary entry for
foll ow ng <nane> and conpile foll ow ng
XXX n-> list of nunbers and execution addresses

of words into <nane's> body. Wen <nane>
is executed the value fromthe stack is
conpared with the nunber in front of

: SW TCH -> each word's execution address in the
list, and if the values are equal that
word is executed. Only one word fromthe
list is executed and if there is no
match with the nunber execution con-
tinues with the word after xxx. The

HARTFORTH - 34

HARTFORTH - A 79-Standard FORTH Conpi |l er

Term nal and Print Functions

"IN ->n
I'N ->n
DIN ->d
?KEY ->n
UR nl n2 ->
.R nl n2 ->
D. d ->
D.R dn ->

definition nust be term nated by
';SWTCH, e.g. SWTCH NUMBER 10 TEN 8
El GHT 2 TWD ; SW TCH defi nes NUMBER
Entering 8 NUMBER wi || cause EIGHT to be
execut ed.

An I mredi ate word all owi ng col on defini -
tions to cross bl ock boundaries. Causes

i nterpretati on on next block whether in

conpi | e node or not.

Get string from keyboard | eavi ng address
of length byte (PAD).

Get nunber from keyboard to stack.

Get doubl e I ength nunber from keyboard
to stack.

Scan keyboard, n=0 if no key pressed,

el se n=ASCI| code.

Print unsigned nunmber nl, right aligned
in field n2 I ong.

Print signed nunber nl, right aligned in
field n2 | ong.

Print doubl e nunber signed.

Print doubl e nunber signed right aligned
in n character field.

Virtual Menory Editor [These words are in the EDI TOR vocabul ary]

n CLEAR n->
nl n2 COPY nl n2 ->
nl n2 | NDEX nl n2 ->

nl n2 TO MEMORY nl1 n2 ->

nl n2 TO DI SC nl n2 ->
nl n2 n3 MWVE. UP nl1 n2 n3 ->

nl n2Z n3 MOVE DOMN nl1 n2 n3 ->

Q ->

Clear screen n to contain all spaces
and mark as updat ed.

Copy screen nl to screen n2.

Mark n2 as updat ed.

List line O of screens nl to n2

i ncl usi ve.

Tenmporarily store in RAM screens

nl to n2 inclusive.

Reverse action of TO MEMCRY.

Moves screens nl to n2 inclusive

up by n3 offset.

Moves screens nl to n2 inclusive
down by n3 offset.

Save all updated screens and nmake FORTH
t he context vocabul ary.

HARTFORTH - 35

HARTFORTH - A 79-Standard FORTH Conpi |l er

Screen Editor [These words are in the ED TOR vocabul ary]

n VI EW n-> Enter Full-screen editor, the foll ow ng
commands are not FORTH words and are
actioned i medi ately.

Home the cursor to the top left of the screen.

Toggl e the character under the cursor from upper to

| ower -case or vice-versa.

Save current screen contents in current buffer

and mark as updat ed.

Leave screen editor and re-enter outer interpreter.

Insert characters into current |ine, noving characters under

and after cursor to the right, until ENTER <UPARW;, <DNARWS,

or <RTARWs are pressed.

R Repl ace existing characters in current |line, by typing over
them until ENTER <UPARW, <DNARW;, or <RTARWs are pressed.

D Del ete character under cursor and close up line fromright.

<CLEAR> Clear line fromcursor to end of |ine.

— O w i

<UPARWE, <DNARWS, <LTARWS, <RTARWe, <ENTER>, <SHI FT- RTARWs, and <SHI FT- LTARW:
nove cursor about the screen if not in insert or replace node.

control C Copy current line to PAD.

control P Put line fromPAD at this position and nove other |ines down.

control D Delete this line and nove other lines up. Line is saved in
PAD i f needed.

control R Replace this line with the one at PAD.

control E Enpty the entire screen, fill with spaces.

+ OR ; W1l display next screen.

- W11l display previous screen.

Doubl e Length Words

2! d n-> Store doubl e | ength nunber d
at address n.
2 n->d Fet ch doubl e | ength nunber
from address n.
2CONSTANT XXX d-> Define double |l ength constant xxx. When
i nvoked will |eave d on stack.
2DROP d-> Drop doubl e numnber.
2DUP d->dd Dupl i cat e doubl e nunber.
20VER dl d2 -> dl1 d2 d1 Copy doubl e nunber.
2ROT dl d2 d3 -> d2 d3 di1 Rot ate set of three doubl e nunbers.
2SWAP dl d2 -> d2 d1 Swap two doubl e numbers.

HARTFORTH - 36

2VARI ABLE xxX

HARTFORTH - A 79-Standard FORTH Conpi |l er

-> Create double I ength variable
of name xxx.

DO= d->f Leave true flag if d is zero.
D= dl d2 -> f Leave true flag if dl1 = d2.
DABS dl -> d2 Leave d2 as absolute value of dl.
DIVAX dl d2 -> d3 Leave | arger of d1 and d2.
DM N dl d2 -> d3 Leave smaller of dl1 and d2.
Dk udl ud2 -> f True if udl is |ess than ud2.
Bot h unsi gned.
DNEGATE
D+ These words exist in the FORTH kernel .
D See glossary of 'Additional words in
DU FORTH kernel '.
DU MOD
D* dl d2 -> d3 Doubl e | ength signed nul tiply.
D dl d2 -> d3 Doubl e | ength divide d1/d2 = d3.
Al'l signed.
O/ MOD, DMOD, D*/ , D/ MOD Are anal ogs of single-length functions.
S>D n->d Convert signed nunber to doubl e nunber.
D>S d->n Convert signed double number to
si ngl e numnber.
D>Q d ->q¢ Convert signed double nunmber to
quad nunber.
D qg->d Convert signed quad nunmber to

String Handling

SEND

"VARI ABLE xxX

" CONSTANT xxX

doubl e nunber.

Wor ds

These words exist in the FORTH kernel. Do NOT do any string
operations on a string literal as the byte count is used to
junp over the string. The string should be copied el sewhere
if it is to be altered.

n-> Create variable named xxx with length n.
Do not try to store a string |longer than
ninthis variable.

n-> Create string constant named xxx from
string at n. Invoking xxx | eaves address
of byte count of string on stack.

nl -> n2 Fetch string fromaddress nl to PAD
| eavi ng address n2 of PAD.

nli n2 -> Store string at address nl to
address n2.

HARTFORTH - 37

"LEFT

"Rl GHT

"MD

COVPARE

" COMPARE

Arrays

ARRAY XXX
XXX

2ARRAY XXX
XXX

" ARRAY XXX
XXX

HARTFORTH -
nl n2 ->
nl n2 ->
nl n2 n3
nl n2 ->
nl n2 n3
nl n2 ->
nl n2 ->
nl n2 ->
nl n2 ->
n->

nl -> n2
n->

nl -> n2
nl n2 ->
nl -> n2

A 79- St andard FORTH Conpi l er

Alter string at nl to contain n2
| eft-nost characters of original.

Alter string at nl to contain n2
right-nmost characters of original

Alter string at nl to contain n2
characters of the original conmencing
from character n3

Alter string at nl by appending string
at n2 to it and adjusting | ength byte.

Returns f=0 if nunber of bytes n3 are
identical starting at nl and n2. Returns
f=1if bytes at nl are al phabetically
greater than those at n2. Returns f=-1
if bytes at nl are al phabetically |ess
than those at n2, used by " COVWARE

Return f=0 if strings at nl and n2 are
identical, f=1if string at nl is
greater, f=-1if string at nl1 is |ess.

Return flag=1 if string at nl is ident-
ical to string at n2, f=0 otherw se

Return f=1 if string at nl greater than
string at n2, f=0 otherw se.

Return f=1 if string at nl |ess than
string at n2, f=0 otherw se.

Create an array of n elements of single
preci sion nunbers. Wen xxx is refer-
enced the address n2 returned is the
address of the nl-th element. 0 < nl <n

As ARRAY but for doubl e precision
nunber s.

Create a string array of n2 elenments nl
bytes long. Strings may be shorter than
el ement size but nust not be | onger or
the system may crash as the dictionary
may be corrupt ed.

HARTFORTH - 38

HARTFORTH - A 79-Standard FORTH Conpi |l er

CARRAY XXX n-> Create an array of n bytes.
XXX nl -> n2 As ARRAY but for bytes.
FARRAY Defined in the floating point screens.

TRS-80 Devi ce Words

CURSOR n-> Move cursor to screen position n count-
ing fromtop left corner; 0 <n < m
[m=1023 for Md 1/3, 1919 for Md 4]

CLS -> Cl ear screen and hone cursor.

LI NE n-> Position cursor to start of line n;
0< n <m [nmax=15 for Mdd 1/3; 23 for 4]

TAB n-> Move cursor to n- th position of current
i ne.

CURS. OFF -> Turn cursor off.

CURS. ON -> Turn cursor on.

The following six words are graphics functions. In the stack pictures, 0<x<h
and O<y<v; Mdel 4: h=159, v=71; Model 1/3: h=127, v=47.

GSET Xy -> Set graphics bit at co-ordinates x,Y.
CCLR Xy -> Cl ear graphics bit at co-ordinates x,YV.
G? Xy ->f f=1if graphics bit at x,y is set,

f=0 ot herw se.

HLI NE xyl -> Draw a horizontal line of length | from
co-ordinates x,YV.

VLI NE xyl -> Draw a vertical line of length | from
co-ordinates x,y; | may be negative in
both HLINE and VLI NE

BOX x1 yl x2 y2 -> Draw a rectangul ar box, top left corner
at x1,yl; bottomright corner at x2,y2.

DCB xxx -> Al l ocate space for 32 byte DCB and 256
XXX ->n byte sector buffer. xxx then | eaves
address of this area.

DATA n -> n+50 Used after DCB nane to access buffer.

HARTFORTH - 39

HARTFORTH -
FI LENAMVE nl n2 ->
CHECK f ->
NEW FI LE ->
DO. SVC bc de hl n - bc, de, hl,
PEM T c ->
PCR ->
PSPACE ->
PSPACES n->
PTYPE nl n2 ->
PSEND n->
PLI ST n->
PLI STS nl n2 ->)
P n->=
PFF ->
pP." ->

EMT. TO PRINTER ->

EMT. TO DI SPLAY ->

Random Nunber s

SEED ->n

af

A 79- St andard FORTH Conpi l er

Moves string, length byte at nl, to DCB
at n2 for use as filename for OPEN or
INIT. Appends ODH to string in DCB.

If f>0 then do ERROR to display DCS
error nessage.

Create new file or extend (but not
shorten) existing file.

Do TRSDOS SVC call nunber n setting the
processor registers to the initial

val ues on the stack and | eaving the

val ues returned by the SVCcall. [Valid
for TRSDCS 6. x only].

Send ASCI| character to printer.
Send CRto printer.

Send one space to printer.

Send n spaces to printer.

Send n2 characters from address
nl to printer.

Send string to printer,
I ength byte at n.

Li st screen n to printer.

Li st screens nl to n2 inclusive
to printer.

Print n as signed integer with
trailing bl ank.

Send a formfeed to the printer.

Send nessage to printer,
term nated by ".

message

Send all termnal output to the printer.

Restore term nal output to display.

Vari abl e contai ning seed for random
nunber generat or.

HARTFORTH - 40

HARTFORTH - A 79-Standard FORTH Conpi |l er

RAND -> Cal cul at es next random nunber in the
sequence and updat es SEED.

RANDOM nl -> n2 Returns a random nunber n2 bet ween
1 and nl.
RANDOM ZE -> Random zes SEED by di scardi ng the next

1 to 127 random nunbers, the actual
nunber to be di scarded bei ng obtai ned by
readi ng the Z80 refresh register.

Fl oati ng Poi nt

Fl oati ng point nunbers are held as 3 words on the stack and in nmenory. On the
stack the binary exponent is on top wth the double Iength mantissa
underneath. The notional decimal point is positioned one position fromthe
left of the word giving a range of values of approximtely +/-0.5, although
nunbers are nornalized to values of +/-0.25 thus preventing overflow on add
or subtract. The exponent is signed and is the actual binary exponent (no
offset). If a value of zero results froman add or subtract, or is entered
externally, then the normalize function will "round"” it upwards by adding a
one at the least significant end of the value and decrenenting the exponent.

FDROP f -> Lose floating point nunmber from stack
FDUP f ->f, f Duplicate f.p. nunber.
FOVER f1f2 ->f1f21f1 Duplicate second f.p. nunber on stack.
FSWAP fl1f2->f2f1 Swap top two f.p. nunbers on stack
FROT fl1f2f3 ->f2f3f1 Rotate f.p. nunbers on stack.
FABS fl->1f1 Return absol ute value of f.p. nunber.
F n->f Fetch f.p. nunber from nenory address n
F! fn-> Store f.p. nunber at address n
FCONSTANT xxx f -> Create f.p. constant xxx. |nvoking xxx
returns the f.p. nunber to the stack
FVARI ABLE xxx -> Create f.p. variable xxx. Invoking xxx
XXX ->n returns the address of xxx to the stack
FARRAY xxX n-> Create an array of n f.p. nunbers named
XXX nl -> n2 XXX. lnvoking xxx returns the address n2
of the nl-th elenent of the array
(0 <nl1 <n).
FNORM f->f Nornmal i ze f.p. nunber on stack by
shifting right or left until in range

+/-0.25 then adjusting exponent.

HARTFORTH - 41

HARTFORTH - A 79-Standard FORTH Conpi |l er

FPACK f -> fd Pack floating point nunber into 2 words
by putting 8 bit signed exponent at LS
end of nmanti ssa.

FUNPACK fd ->f Reverse action of FPACK
F* fl1f2 ->1f3 Return normalized product f3
of f1 and f2.
F/ fl1f2 ->1f3 Return normal i zed quotient f3 of
f1 divided by f2.
F+ f1f2 ->13 Return normalized sumf3 of f1 and f2.
F- f1f2 ->13 Return nornmalized difference f3

of f1 mnus f2.

F< fl1f2 ->flag Return flag = 1 if f1 less than f2,
flag = 0 otherw se.

F> fl1f2 ->flag Return flag = 1 if f1 greater than f2,
flag = 0 ot herw se.

FO< fl1->flag Return flag = 1 if f1 negative,
flag = 0 otherw se.

FO> fl1->flag Return flag = 2 if f1 positive,
flag = 0 ot herw se.

D>F d->f Convert double length integer d to
normal i zed f.p. nunber.

F>D f ->d Return integer part of f.p. nunber as
doubl e | ength integer.

SCl >FBI N dl n2 -> f Convert integer mantissa dl1 and deci nal
exponent nl to normalized f.p. nunber.

FBI N>SCl f ->dlnl Convert f.p. nunber to integer nmantissa
dl and deci mal exponent nl.

F. f -> Print f.p. nunber as n xed nunber
between 1 and 10 fol |l owed by deci nal
exponent. Number of digits printed in
manti ssa i s governed by constant F.LEN

F. LEN -> 8 Constant that returns nunber of digits
that F. produces. Normally 8, but may
be "ticked" if fewer digits required.

FZERO -> f A small floating point nunber (0.5 x 2)

HARTFORTH - 42

HARTFORTH -

FCONS xxx nl n2 ->
XXX -> f

Debug Facilities

DEBUG ->
RESUME ->
DSTACK? ->
RSTACK? ->

DECOWPI LE <nanme> ->

A 79- Standard FORTH Conpi l er

which is neant for use in clearing
accunul ated totals, etc.. Not neant for
use as a true zero.

Create a f.p. constant xxx fromnl a
single length integer, and n2, a
deci mal exponent.

If conpiled into a definition this wll
enter the outer interpreter to all ow ex-
am nation of the stacks, variables, etc.
to aid fault finding. Do not alter any-
thing crucial to the operation of the
system or the application. BASE, >IN,
BLK and CONTEXT are stored on entry and
restored on exit. HERE and DEPTH are
stored and exit not allowed if either
are changed. A nodified OK pronmpt is
used while in DEBUG

Used within DEBUG to return to the
application.

Non-destructively displays the data
stack contents as signed nunbers ac-
cording to BASE. Shows the top 6 itens.

Non-destructively displays the top 6
items of the return stack as word nanes,
if avalid Code Field Address, or as
unsi gned hexadeci mal nunbers ot herw se.

D spl ays a deconpilation of the word
<name> as word nanes, if a valid Code
Field Address for a named word, or as
unsi gned hexadeci mal nunbers as nmay
occur for headerless internal words used
in inplenenting HARTFORTH. All contro
structures in HARTFORTH conpile down to
condi ti onal branches or unconditional
branches which may junp forwards or
backwards. Branches are shown fol |l owed
by a byte offset, the conditional branch
branching if the top stack itemis zero.
Afewtrials will show how IF. .. THEN
etc. are conpiled but remenber that each
FORTH word junped over is two bytes in
the definition. If it is obviously going

HARTFORTH - 43

HARTFORTH - A 79-Standard FORTH Conpi |l er

wrong pressing any key stops the
deconpilation. Primtive functions
cannot be deconpiled and produce
meani ngl ess out put .

XREF <name> nl n2 -> Search screens nl to n2 inclusive for
words that match <nane> and print out
the line nunbers (0 -> 15) of every
occurrence in each block. Pressing any
key aborts the search.

REDEFI NE <nanel> <nane2> -> Amend Code Field Address of <nanel> so
that all existing and future references
to <nanel> actually execute <nane2>.
Effectively <nanel> no | onger exists
al t hough VLIST will still showit.

Useful to tenporarily correct an early
i ncorrect definition without reconpiling
al | subsequent definitions.

HARTFORTH Vari ati ons From " STANDARD' Practices

(Not Necessarily Non 79- STANDARD)

1) Doesn't accept multi-line definitions fromkeyboard. Wul d need
m nor change to | NTERPRET to check STATE only if BLK=0.

2) Doesn't accept doubl e-precision nunbers frominput streamif "." is
part of nunber. Variable DPL is not present. To do this needs a
rewite of ?NUMBER

A fix for 1) above is to FORGET- SYSTEM

MODL DROP BLK 0= IF STATE |IF R> DROP R> 14 - >R THEN THEN,

FIND MOD1 ' | NTERPRET 56 + | HERE SYS 7

The Fol |l owing Pertains to TRSDOS 6.x Version Only

Menory File and DisK Editor

MEDI TOR D spl ays and anends nenory contents
FEDI TOR Di spl ays and anends disk files
SEDI TOR Di spl ays and anends disks at the individual sector |evel

Al are in the ED TOR vocabulary. At the display level in all three editors
the '+ displays the next disc sector or next 256 byte page of nenory; '-'
di spl ays the previous sector or page. Qut of range or invalid disk data is
shown as all zeros. The arrow keys nmove the cursor around the screen.

HARTFORTH - 44

HARTFORTH - A 79-Standard FORTH Conpi |l er

"A" enters the ASCII nodification nmode which allows ASCII text to be typed
in, 'X enters the hexadeci mal nodification node which allows hex nunbers to
be typed in. To exit either node press a cursor key or ENTER Menory
nodi fications are done imediately, disk sector nodifications are not done
until 'S is pressed at the display level. Pressing 'Q at the display I|evel
exits fromthe editor.

Pressing "M or 'N in MEDITOR at the display |evel requests a new nenory
address; pressing 'N in FED TOR requests a new sector nunber while in
SEDI TOR it requests a disk, track and sector nunber. The nunber at the bottom
right of the display represents the cursor nmenory address in MEDITOR file
sector and cursor byte nunber in FEDI TOR and track sector and cursor byte
nunber in SEDI TOR which displays a '*' in front of this nunber if a directory
sector is read.

Nati ve Code Cener ator
Wbrds for which code can be generated are as foll ows:

DUP DROP SWAP OVER ROT PICK ROL ?DUP >R R R
< = > 0< 0= W
+ - 1+ 1- 2+ 2- * [/ MDD 2* /2
MAX MN ABS NEGATE AND OR XOR
I C a + MOVE CMOVE FILL
DO LOOP +LOCP | J IN QUT
IF ELSE THEN BEG N UNTIL WH LE REPEAT EXIT

Note that LOOP and +LOOP are non-standard in that they termnate ONLY when
the count (after increnenting) is EQUAL to the limt. This was chosen for
speed of execution.

The foll owi ng | oop nechanismis very fast but is non- nestable.

COUNTS n-> Set initial count to n-1.
COUNT? ->n Return current val ue of count.
END. COUNT -> Decrenent count by 1 and re-execute the

word after COUNTS if COUNTS is > 0.

LI TERAL n-> Enclose n into the definition to be
returned to the stack when executi ng.

XXX -> ncl ose code to i nvoke the or
(COWPI LE) Encl d i k he CURRENT
FORTH word xxx at run-tinme.

<(-> Stop generating code and execute CURRENT
or FORTH words normal ly.

) > -> Re-activate the code generator after a
previous)>.

HARTFORTH - 45

	Top of document
	Distribution Diskette
	Model I TRSDOS Patch
	Note on Model I/III Compatibility
	Getting Started
	The FORTH/CMD File
	An Introduction to FORTH
	An Overview of HARTFORTH
	HARTFORTH Error Messages
	Additional Functions
	Additional Words in FORTH Kernel
	General Utility Words (In FORTH Vocabulary)
	Assembler: FORTH Vocabulary
	Additional Control Functions
	Virtual Memory Editor
	Screen Editor
	Double Length Words
	String Handling Words
	Arrays
	TRS-80 Device Words
	Random Numbers
	Floating Point
	Debug Facilities

