L USER’S
GUIDE

by Gal actic Software Ltd.

LBASI C TABLE OF CONTENTS

Introduction to LBASI C ..
Entering LBASI C
LBASI C General Informati on
LBASI C CommBnds e
&H 7 GET ... 16

& 7 INPUT# 16
CLCSE 7 INSTR 17

CMD ... i 8 KILL 19
CMD'dos command” 8 LINEINPUT 19

CMD'A" 9 LI NEI NPUT# 20

CMD'B" . 9 LOAD 21

CMD'D' 9 LOC 22

CMD'E" 9 LOF ... 22

(©1/5 A 9 LSET 23

CMD'L" 9 MERGE 24

CMD'N' 10, 47 MD$= 25

CMD'O 10 MD$ 26

CMD'P' ... 10 MIS$... 27

CMD'R' 10 MKS$.. 28

CMD'S' . 10 OPEN 29

CMD'T" 10 PRINT# 33

CMD'X' ... 10, 48 PRINT# USING 37

CWD 11 PUT 38

VI .. 11 RSET 39

CVS ... 11 RUN 40

DEF FN 12 SAVE 42
DEFUSR 13 SET ECF 44

ECF 14 TIMES 44
FIELD 14 USR 45

LBASIC Error D

LDOS is a Trademark of Logica

ctionary

First Edition
Copyright 1981 by Gal actic Software,

LBASIC Model /111
Ltd.
Al Rights Reserved

Systens, |ncorporated

I NTRODUCTI ON T0 LBASI C

Contained on your LDOS Master Diskette is a program naned LBASIC CVD
(LBASIC). As was noted in the GETTING STARTED portion of the nanual, your
conputer contains two different types of nmenory, ROM (Read Only Menory) and
RAM (Random Access Menory). Your conputer, as received fromyour deal er, does
contain a ROMBASIC. This ROM Basic does allow you sone capabilities of
progranmng in the Basic | anguage. However, ROM Basic does not allow you to
interface with your disk drives when programm ng, and hence does not fully
utilize your TRS-80 disk system For this reason, LBASIC has been included
with your LDCOS system LBASICis an extension of ROM Basic and resides in
RAM LBASIC wutilizes conmmands found in ROM Basic, and adds conmands to ROM
Basic which will allow you to interface your Basic prograns wth the disk
operating system Because of this, prograns and data files created under
LBASIC may be stored on your disk drives. In addition, many LDGCS functions
may be performed when programming in LBASIC, wthout having to return to the
"LDOS Ready" |evel.

This manual will detail all enhancenments to ROM Basic which are contained in
LBASI C. Commands which are inherent in ROMBasic wll not be detailed in this
manual . Refer to your Radio Shack owner's manual (Mddel | Level Il Basic
Manual or Mdel 11 Operation and Basic Language Reference Manual) for a

conpl ete description of ROM Basi c comrands.

One final point concerning the LBASIC manual. It is witten as a reference
manual only. Al comands wll be explained in ternms of the function which
they serve. In no way will this manual serve as a tutorial on inplenmentation
of these conmands. There are many such books currently on the market that
deal wth using a "Mcrosoft conpatible” disk Basic for generalized and
specific applications. If you require tutorial aids for inplenmenting LBASIC
contact your computer dealer for a list of such material.

ENTERI NG LBASI C

This is the syntax to be observed when entering LBASIC

LBASIC (parmparm. . . ,parm conmand

LBASIC * wused to re-enter LBASIC with the program and
the variables intact.

The al | owabl e paraneters are as foll ows:

BLK= paraneter that specifies Blocked file node,
either ON or OFF. ONis the default.

FI LES= paraneter that specifies the maxi mum nunber of
files LBASIC will be able to access (1 to 15).
If not specified, 3 is assuned.

VEME paraneter to set the highest nenory address
to be used by LBASIC. All nmenory above this
address will be "protected". If not specified,
all nenory up to HGHS will be avail able.
This paranmeter may be specified as either a
deci mal (MEM=nnnnn) or hexadeci mal (MEM=EX xxXxXx')
val ue.

= paraneter used as a switch to turn on or off
the default file extension "IBAS" used with
the LBASI C commands LOAD, RUN, MERGE and SAVE.
Either ON or OFF may be specified. If not
specified, ONis assumed. See LBASIC - GENERAL
| NFORVATI ON for a detail ed description.

H G4 Mdel 11l paraneter that sets the cassette baud
or rate, either H GH or LOW (H G+=1500 and LOMS500).
Low The default is HHGH ** If HHGH is used, the
H TAPE conmand nust be issued prior to entering
LBASIC. **

command - This may be any valid LBASI C conmand
which will execute imediately upon entering
LBASI C, such as RUN'MYPROE BAS', AUTOL00, etc.

abbr: BLK=B, FILES=F, MEMFM ON=Y, OFF=N, H GH=H, LOWL

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| EXT=E
I

Any or all of the paraneters may be specified when entering LBASIC. If no
paraneters are specified, the default values listed in the above syntax bl ock
will be assuned.

The "command" specification is also optional. |If not specified, you wll
enter into LBASIC, and the following lines will appear on the screen:

LBASIC - Version 5.x.x - mmdd/yy
(O 19xx by Logical Systems |ncorporated

Ready

The "Ready" pronpt will indicate that LBASICis ready to accept any command
that you wish to give it.

If you have rebooted the system or have performed an exit fromLBASIC to the
operating system (usually done by issuing a CMD'S" comand), and wish to
re-enter LBASIC, you may enter the command:

LBASI C *

at the LDOS Ready |l evel. Doing so will cause LBASIC to be re-entered, and any
programthat was resident in menmory prior to performng the exit to the LDOS
Ready level will remain intact. Be aware of the fact that if LBASIC * is used
to re-enter LBASIC from the LDOS Ready Ilevel, any conmands which affect
H GH$, or any commands that wutilize nenory (such as BACKUP and COPY) may
cause your LBASIC programto be overwitten with other information. For this
reason, LBASIC * should only be wused as a last resort. You may perform
certain LDOS Library conmands directly fromLBASIC (using the CVD conmmand).
If a function cannot be perfornmed from LBASIC using the CMD command, it is
not advised to re-enter Basic using LBASIC * if you have exited back to LDCOS
to performthe command, as the integrity of your programw || be suspect.

Exanpl e

One of the following commands may be given if you wish to enter LBASIC in the
bl ocked file nobde with 2 files open, having menory protected up to location
61 440 (X FOO0'). Also, you w sh to have the program MYPROG BAS | oaded upon
entering LBASIC

LBASI C (FI LES=2, MEM=61440, BLK=ON, EXT=QN) LQAD' MYPROG BAS"
LBASI C (F=2, M=X FO00') LQOAD' MYPROG'

I ssuing either of the above two conmands will produce the same results. The
second comrand above uses the abbreviations F and M for FILES and MEM and
also utilizes the default "ON' for the BLK and EXT paraneters. Note that the
extension for the program MYPROG BAS need not be specified if EXT is ON
Also, realize that for either of the above commands, if HGH$ is | ower than
61440 (X FO00'), an "Qut of Menory" error will occur, and you wll be
returned to the LDOS Ready pronpt w thout entering LBASIC.

LBASI C- GENERAL I NFORMATI ON

ABBREVI ATED COVIVANDS

Each of the followi ng LBASIC comrands nmay now be represented as single
characters. When using a single character comand, the effect will be
identical to wusing the entire word. This abbreviated form is only
acceptable when typed on a command line, not in a program line or JCL
file.

A represents the command AUTO

D represents the comand DELETE

E represents the command EDI T.

L represents the command LI ST.

The followi ng commands are inplenented by pressing the indicated key as
the first character in the command line. No carriage return is necessary;
the indicated action will take place inmmediately. Note that any of the
follow ng single key comands nust be the first character entered after
the "Ready pronpt" appears.

(period) This will performthe same function as "LIST.<ENTER>", which
will instruct LBASICto list the currently active |ine.

,(comma) This will performthe sanme function as "EDI T. <ENTER>", which
will instruct LBASIC to enter the "edit node" for the currently
active line.

<UP ARROWNs This will cause LBASIC to display the next |ower nunbered |ine
in the program

<DOMN ARROW This will cause LBASIC to display the next higher nunbered
line in the program

<LEFT ARROW This will cause LBASIC to display the first line of the
program

<RI GHT ARRON> This will cause LBASIC to display the last line of the
program

DEFAULT EXTENSI ONS

LBASIC allows vyou to wutilize the default extension of /BAS when issuing
the LOAD, RUN, MERGE and SAVE commands. If the EXT paraneter is set to ON
(or not specified) when entering LBASIC, all filespecs used with the above
conmands that do not have extensions wll be assigned the extension /BAS
If EXT is on and an extension is specified, the extension used in the
filespec will override the default extension.

If EXTis ON and the file in question has no extension, it rmust be
specified as "filename/" (i.e. the "/" will override the extension /BAS
with no extension). |If the EXT paraneter is turned OFF when entering
LBASIC, all file extensions will have to be specified.

FI LE BLOCKI NG

LBASIC provides a Blocked file node (which has often been m snaned
Variable Length Files). This node allows files with Logi cal Record Lengths
(LRL) of less than 256 bytes to be created and accessed. Any record |ength
from1l to 256 bytes will be allowed, even if the record size is not evenly
divisible into 256.

Al'l blocking and de-blocking across "sector boundaries” wll be performed
by LDOS. In this way, user records can span across sectors to provide
maxi mum di sk storage capacity. If the LRL is not specified when OPEN ng a
Random file, 256 will be assumed. Note that an LRL of O will signify a 256
byte LRL. Enhancenents have also been made to the allowabl e nmethods of
OPEN ng bot h Random and Sequential type files (See OPEN).

If the Blocked file node is ON, each file declared when entering LBASIC

will take 544 bytes of nmenory. If the Blocked node is OFF, each file wll
t ake 288 bytes.

LBASI C OVERLAYS

Three overlays are present on a Master LDOS diskette. They are:

LBASI CJ OV1 - This overlay contains the renunbering program associated
with the LBASIC CMD'N' function. It may be killed if no renunbering wll
be done.

LBASIC OvV2 - This overlay contains the cross reference program
associated with the LBASIC CWVD'X" function. It may be killed if no cross
referencing will be done.

LBASICJ OV3 - This overlay contains the error handling routine used with

LBASIC, along with the sort routine used for the CVMD'O" function. It
MJST be present when using LBASIC

PROGRAM PROTECTI ON

LBASIC prograns may be protected wth an "Execute only" password. This
means that the program may be RUN, but not LOADed, LISTed, LLISTed, or
ot herwi se exam ned. Any attenpt to break the program execution and exam ne
the programw |l cause the program to be erased from nenory, and the
message "Protection has cleared nmenory" wll be displayed. The DEBUCGger
wi Il al so be disabl ed during program executi on.

SI NGLE STEPPI NG AN LBASI C PROGRAM

This new feature allows the LBASIC programer to step through each program
statement singly, wth a "HO.D' after each step. To invoke this feature
simply do a normal pause (<SH FT @), which will cause LBASICto go into a
wait state. While continuing to hold down the <SH FT @ press the <SPACE
BAR>) and the next LBASIC statenent will execute. After execution of that
statement the computer will imediately go intoits wait state again.
Hol ding down the <SPACE BAR> will execute statements at the nornal
keyboard repeat rate. If you press any key without hol ding down the <SH FT
@, normal program execution wll resune. Note that this feature also
functions when listing a program

TAPE ACCESS

Accessing information off of tape wll vary depending on the type of
machi ne you are using. You should foll ow these guidelines when storing and
retrieving informati on fromtape.

Model |1 users need to disable the interrupts prior to performng tape 1/Q

and nust re-establish them after the input/output has been perfornmed. To
di sable the interrupts, wuse the LBASIC command - CMD'T" -. To enable the
interrupts, use the conmmand - CVMD'R' -. See the LBASIC Comrands Section
for nmore information on these two conmmands.

Model 111 users need to do one of several things, depending on the type of

tape involved. If you are dealing with a 500 baud tape, you will need to
specify the LON paranmeter when entering LBASIC (Renmenber, if HGH or LOW
is not specified, the default wll be HGH. |If you are dealing with a

1500 baud tape, you wll need to establish the HTAPE utility. For nore
information on H TAPE, refer to the Uilities section of the LDOS manual

LBASI C COMMANDS

This section of the manual will detail commands found in LBASIC which are not
included in ROM Basic. These conmands will be listed in alphabetical order
For the novice, this type of grouping mght be a bit confusing in terns of
when and how these commands will be wused. However, for the person who is
somewhat versed in using a disk oriented Basic, this will be a very
conveni ent way of |ocating information dealing with any LBASI C conmand.

&H - Hexadeci nal Representati on of a nunber

To represent a nunmber in its hexadecimal format, you may use the
characters - & - as a prefix to the nunber. This may be wuseful when you
wish to define an address for a user nmachine |anguage subroutine (see
DEFUSR) .

One to four hexadecimal digits may follow the &H prefix. Hexadecinma
digits consist of the numeric digits 0-9, as well as the alphabetic
letters A-F. The nunber represented using the &H prefix will always be
taken as two's conpl enrent notation

Exanpl es
A=&H11 (A woul d be set equal to the decimal nunber 17).

A=&HA9 (A woul d be set equal to the decimal nunber 169).
A=&HFO00 (A would be set equal to the deci mal nunber -4096).

&0 - Octal Representation of a nunber

To represent a number in its octal format, you may use the characters - &O
- (or just - & -) as a prefix to the nunber.

One to six octal digits may follow the & prefix. Octal digits consist of
the numeric digits O0-7. The nunber represented using the &O prefix will
al ways be taken as tw's complenment notation. The |argest octal nunber
whi ch may be represented is &OL77777.

Exanpl es

A=&0O11 (A woul d be set equal to the decimal nunber 9).
A=&170000 (A would be set equal to the deci mal nunber -4096).

CLOCSE - Close any or all open disk files

The CLOSE command is wused in conjunction with the OPEN command. After a
file has been opened, it is capable of being read fromand/or witten to.
To disable this read/wite capability of a disk file, a CLOSE of the file
must be done. In addition, CLOSE will update the Mod flag, Md date and
end of file marker in the directory record of that file (provided the file
has been witten to). See OPEN for nore information on file access.

The syntax for the CLOSE command may be in one of the follow ng formats:

CLCSE

CLCSE #,...,#
The CLOSE conmand issued by itself will «close all open files. The CLCSE
#,...,# command will close only those files that have been opened with the

specified buffer nunber (where # represents the buffer nunber used to
define a particular file in an OPEN statenent).

If you issue any command which will perform a CLEAR (such as EDIT, CLEAR
or RUN), a global CLOSE will automatically be performed for you. However,
if you issue a CVMD'S', CVMD'A', or CVMD'l" comuand, closing of any open
files will not occur. For this reason, you should always make sure files
have been closed prior to exiting back to the LDOS Ready pronpt.

CMVMD - Performan LDOS or Special Conmand

The CMD comrand allows you to perform certain LDOS library and utility
conmands wi thout having to leave LBASIC. In addition, there are 13
di stinct paraneters that nmay be used in conjunction with the CVD comrand
which wll allowyou to perform various different functions. The syntax
used for the CVMD command is as foll ows:

CVD'dos command”
C\VD'x" (Where 'x' is the letter assigned to the special comand).

W wll first describe how to use the CVMD command to issue an LDOS
conmand, after which we will explain the use of the 13 distinct paranmeters
with the CVD conmand.

CVMD'dos command"

LDOS Library commands and Wilities that do not affect HGH may be
executed from LBASIC by use of the OCWD'dos conmand”". The foll ow ng

exanpl es should illustrate inplenentation of this feature:
CVMD'D R : 0" - WIIl display a Directory of the disk in drive O.
C\VD' DEVI CE" - WIIl display the device table.
CMD'LI ST DAT1/SCR' - WII list the file DAT1/ SCR
CVD'BACKUP : 0 : 1" - WIIl performthe designated Backup.
After the desired LDOS function has been conpleted, control will be

returned to LBASIC. This type of CWVD command will function whether it is
called fromLBASICs command line or fromwthin an LBASIC program |If
performed from within an LBASIC programand an error occurs, or the CM
conmand is aborted wth the break key prior to being conpleted, the
appropriate error nessage wll be displayed, or the nessage "System
Conmand Aborted" wll appear, and execution of the Basic program in
question wll be termnated. The command may also be contained wthin a
string variable, such as the follow ng format:

A$="DIR : 0": CMD A$

Approxi mately 4K of free nenory nust be available for these types of CMVD
conmands, or an "Qut of Menory" error will occur.

avD' A

This command wll perform an abnormal return to LDOS. Any active DO
command wi || be cancel | ed.

CVD'B", "swi tch"

This conmmand w |l enable or disable the <BREAK> key, with "sw tch" being
either ONor OFF. A string constant or string expression may be used to
represent the "swtch".

CVD' D'

Turns on and enters the system Debugger.

CVD'D', "switch”

This command is simlar to the CVD'D' command, wth the follow ng
exceptions. The switch ON wll turn on the system Debugger, but will
remain in LBASIC. Pressing the <BREAK> key (or <CLEAR> <SH FT> <D> keys if
M nidos is active) will cause you to enter the Debugger. The switch OFF
will turn off the Debugger.

C\VD'E"

This command will return the Ilast LDOS error nessage encountered. If no
error has been encountered, the nessage "No Error"” will appear. CVD'E' may
be useful when you wish to pinpoint the exact nature of an error. LBASIC s
error dictionary is not as extensive as that found in LDOS, hence various
LDOS errors can produce the same LBASIC error nessage. Performng a CVD'E'
will give you the exact error seen by LDOS. This may be of use when you
get the LBASIC error message "Disk full or wite protected” or "Disk 1/0

error”.

cvD'1 ", "dos conmmand”
This command functions nuch the sane as the CVD'dos command”, wth the
exception that control will return to LDOS after the "dos conmand" has
been executed. Dos command can be represented as a string constant or a
string expression. If represented as a string constant, it nust be

cont ai ned within quotes.

CVMD'L","fil espec”

This command wll Jload a Load Mbdule Format file (a machine |anguage
progranm) into nenory, nuch the same as the LOAD Library comrand does.
Fil espec may be represented as a string constant or a string expression.
If represented as a string constant, it nust be contai ned wi thin quotes.

CMD'N'
This conmand provides you with a program Iline renunbering function. For
the specific paraneters involved with this command, please refer to page
47 at the end of the LBASIC section.

CVD'O', nunber of elenents to sort,first elenent of array to sort

This command will allow you to sort a single dinensioned string array. The
sort wll start at the element specified, and will sort the nunber of
el ements specified. The nunber of elenents to be sorted nust not force the
sort past the end of the array. In order to utilize the CVMD'O" function,
t he nodul e LBASI ¢ OV3 nust be present on a disk in the system

Exanpl e

CVD' O, 15, A$(10)
X=15: Y=10: CMD' O', X, A$(Y)

I ssuing either of the above commands wll cause a sort to be perforned
on the A$ array. After the sort has been finished, elenments 10-24 will
be sorted in al phabetical order.

CVD'P', vari abl e

This command will return the printer status in the variable specified. The
variable may be any type, including a string. The value will have the
bottom 4 bits stripped before being passed back to LBASIC.

CMD'R'
Model | - This command enables the interrupts. It should be perforned
after a OCVD'T" command has been issued. For nore information see the
CVD'T" conmand.
Model 111 - This command will turn on the clock display.

CVMD'S!
This command is the normal way to return to LDOS Ready from LBASIC

CVMD' T
Model | - This command wll disable the interrupts. It nust be issued
prior to performing tape 1/Q After the tape 1/0O has been conpleted, the
interrupts nust be enabled with the CMD'R' conmand.
Model 111 - This command will turn off the clock display.

CVD' X!
Thi s conmmand provides you with a programcross reference function. For the

specific paraneters involved with this command, please refer to page 48 at
the end of the LBASIC section.

CVD - Convert to Doubl e Precision

This command is used to convert an 8 byte string into a double precision
nunber. The 8 byte string should be a representation of a double precision
nunber stored in conpressed format. This conmmand is used primarily to
unconpress double precision values which have been retrieved froma disk
file (in essence, it perforns the opposite function of the MKD$ command).
For nore information on storing a double precision nunber in conpressed
format in a disk file, refer to the MKD$ command.

Exanpl e
AH=CVD(A3$)

In the above exanple, assume that A$ is an 8 byte string which represents
a conpressed double preci sion nunber. After the above command is
performed, A# wll be set equal to the wunconpressed nunber that A$
represents.

Realize that you are not Ilimted inusing CVD to assign a value to a
vari abl e. The value generated by a CVD command may be used directly (e.qg.
PRI NT CVD(A$), or |IF CVD(A$)<100000 THEN GOTO 1000) .

CVl - Convert to |nteger

The CVI command functions identically to the CVD command wth the
followi ng exceptions. The CVI conmand will convert a two byte string into
an integer. This two byte string should be a representation of an integer
stored in conpressed format. CVI perforns the opposite function of the
MKl $ command. The value returned fromthe CVI function wll be an integer
within the range of -32768 to +32767 inclusive. For nore information

refer to the MKI$ command.

Exanpl e

AYECVI (AS)
In the above exanple, assune that A$ is a 2 byte string which represents a
conpressed integer. After the above command is perforned, AZ will be set

equal to the unconpressed nunber that A$ represents.

CVS - Convert to Single Precision

The CVS conmmand functions identically to the CVD command with the
followi ng exceptions. The CVS conmand will convert a four byte string into
a single preci sion nunber. This four byte string should be a
representation of a single precision nunber stored in conpressed format.
CvS perforns the opposite function of the MS$ comrand. For nore
information, refer to the MKS$ conmmand.

Exanpl e

Al =CVS(A$)

In the above exanple, assune that A$ is a 4 byte string which represents a
conpressed single precision nunber. After the above command is perforned,
Al will be set equal to the unconpressed nunber that A$ represents.

DEF FN - Define Function

There are many intrinsic functions provided for you in ROM Basic and
LBASIC (i.e. VAL, STR$, SIN, etc.). The DEF FN command allows you to
define your own functions. This may be of use when performng |engthy
calculations at different points in your programwhen you do not use the
same vari abl e nanes to performthese cal cul ations.

The syntax for the DEF FN conmand is as foll ows:
DEF FNfunction nane(parm... ,parmn =expression

The "function nane" is the name that you will assign to the function, and
has the sane restrictions as those inmposed on a variable nane. The
function name nust be of the sane type as the value to be returned from
the function.

The "(parm.. .,parm" is a list of variables to be passed to the function
The variable names used are local to the function, and act as dummy
variables. They will have no effect on other wvariables in the program
whi ch have the sane nane. However, they nust be of the same variable type
as the variable represents in the function (i.e. string, integer, single

preci sion, double precision). Also, if nore than one variable is to be
passed to the function, they nust be passed in the sane order as that
defined in "(parm.. .,parm" (see exanple bel ow).

The "expression represents how the variables passed to the function are
to be worked on.

The exanpl e bel ow will show how to define and i nvoke your own functions.

Exanpl e

This example wll show how to create a function which wll build a
filespec. This function will be passed three variables; the filenane,
the file extension, and the drive specification. It wll return a
filespec in the form - filename/ ext:d -. A DEF FN statenent to create
such a function m ght take on the follow ng format:

DEF FNFS$(X$, Y$, 29 =X$+"/ " +Y$+": "+M DS(STR$(22) , 2, 1)

The function name is FS$, and is of string type, since a string value
will be returned fromthe function

Three values will be passed to the function. The first two val ues passed
will be strings, while the third value will be an integer

The function that will be perfornmed is as follows. The first string
passed to the function wll have a '/' added onto the end of it, after

which the extension, a ', and the drivespec will be added to the
string, respectively.

The following exanple will illustrate how to invoke the function, as
wel|l as changes that will occur to the variabl es invol ved.

X$="HELLO': F$="MYPROG' : E$="BAS": @2
F1$=FNFS$(F$,E$, %
F2$=FNFS$(E$, F$, %

After execution of the above three lines, the followi ng variables wll
be assigned the foll ow ng val ues:

X$="HELLO' F1$="MYPROG BAS: 2" F2$="BAS/ MYPROG 2"
F$="MYPROG' E$="BAS" %2

Note that the value of X$ does not change fromthe <calling of this
function. Also note the difference between F1$ and F2$. The order in
whi ch vari abl es appear when invoking the function determnes the value
that will be returned fromthe function

As a final note on DEF FN, the value returned fromthe function can be
used directly, and does not have to be stored in a variable (e.g. PRINT
FNFS$(F$, ES, &%)).

DEFUSR - Define the entry point to a user nachi ne | anguage subroutine

This command is used to define the starting address (entry point) of a
user created nmachi ne |anguage subroutine. A DEFUSR statenent nust be done
prior to utilizing the machine |anguage subroutine via the USR conmand.
The syntax for the DEFUSR statenent is

DEFUSRN=XXXX

where nis a numeric constant (0-9) which is used to identify the machi ne
| anguage subroutine, and xxxx is the address which represents the entry
poi nt into the machi ne | anguage subrouti ne.

The nunber assigned to the subroutine (n) nust be the sane as the nunber
used to reference the subroutine with the USR statenent.

The entry address to the subroutine may be a constant (i.e. a hexadeci ma
or decimal nunber), or it may be a numeric expression. Note that if the
starting address is specified as a decimal nunber, and this address is
greater than 32767, it nust be specified as the address m nus 65536.

Exanpl e

Suppose you have a machine |anguage subroutine that has a starting
address of &HFO0O (61440), and you wish to reference this routine as
machi ne | anguage subroutine nunber 2. To define this subroutine, one of
the foll owi ng conmands may be gi ven

DEFUSR2=&HF000
DEFUSR2=(6 440- 65536)
DEFUSR2=(- 4096)

ECF - Determine if "End of File" has been encountered

This command is used to determne if the end of file has been reached when
i nputting froman open disk file. It is used primarily in conjunction with
sequential files, but can also be used with random files. EOF is a
function, and wll return a O (false) if the end of file has not been
reached, or a -1 (true) if the end of file has been reached. It can be
used with the IF statenment, and w |l determne the outcone of the IF, as
it will return either a logical true or a logical false

The syntax for the EOF conmand is:
EOF(#)

where # is the buffer nunber used to open the file.
Exanpl e

Assume that you have created a sequential file named MYDATA, and wish to
access the information in it, but you do not know the anount of data in
the file. The followi ng programlines will illustrate howto use ECF to
determ ne when the | ast piece of data has been accessed.

1000 OPEN'I", 1, " MYDATA"

1100 | F EOF(1) THEN PRI NT"ALL DATA HAS BEEN ACCESSED': END
XXXX

xxxx ‘'lines used to input and process data

XXXX

1500 GOTO 1100

Notice that the EOF conmand is used prior to inputting any information
This wll ensure that you will not try to input froman enpty file, or
after the end of file has been encountered. Either case would result in
an "1 NPUT PAST END' error

FIELD - Partition the buffer associated with a randomfile

The field statenent is used to partition the buffer associated with an
open randomfile. This partitioning allows you to break a record up into
fields, where each field denotes a particular piece of information in that
record. The fielding of a record determines the Iength of each piece of
information in the record, and where this information wll physically
reside in the record.

The syntax used in the FIELD statenent is:

FI ELD#, aaa AS vari abl el, bbb AS variable2,..., nnn AS vari abl eN

is the buffer nunber used in the associated OPEN statenent. It nmay be a
constant, or a nuneric expression. The value of this nunber nmust be in the
range of 1 to the total nunber of files allocated when entering LBASIC,
i nclusive, and nust correspond to an open file.

aaa, bbb and nnn are nuneric constants or expressions denoting the maxi num
length (in bytes) of the fielded variable. The value of these nuneric
constants or expressions must be in the range of 0 to 255) inclusive, as
the length of a string cannot exceed 255 bytes. If denoted as nuneric
expressi ons, these val ues nust be encl osed within parentheses.

vari abl el, wvariable2, and variableN are internediate variables used to
retrieve information fromand pass information to the buffer. They nust be
string vari abl es.

VWen information passes between the conputer and the disk, a buffer is
used as a tenporary storage place for this information. Information is
placed in this buffer with the LSET and RSET commands. Were this
information is physically placed in the buffer is determned by the FlIELD
st at enent .

The field statement will allow you to break up the buffer into various
"slots", assigning a variable name to each of these slots. \When
information is placed into or accessed fromthe buffer, it is done so by
using the variable nane which was assigned to each slot in the FlIELD
statement. The length of each of these slots is also determned by the
FI ELD statenent. The total nunber of bytes to be fielded in a record nust
be I ess than or equal to the nunmber of bytes that a record will contain.

The following exanple will illustrate how the FIELD statenment is used.
Suppose that you wish to deal wth a file that will contain records
whose lengths will be 100 bytes. In each record, there will be 4 pieces
of information (fields). Field1l wll be 20 characters long, and wil|
represent the nanme of a person. Field 2 will be 10 characters | ong, and
will represent an account nunber. Field 3 wll be 30 characters |ong,
and will represent address information. Field 4 wll be 40 characters

long, and will represent an account description. The follow ng OPEN and
FIELD statenments will allow you to open such a file and field the buffer
accordi ngly.

OPEN'R', 1, " MYFI LE/ DAT", 100
FI ELD1, 20 AS NA$, 10 AS AC$, 30 AS ADS$, 40 AS DE$

Using the above lines in a programw || produce the following results. A
file by the name of MyFILE/ DAT will be opened, and records in this file
will have a length of 100 bytes. A buffer for this file wll be set up
in menory. The first 20 bytes of this buffer will represent nane, and
will be referenced by the variable NA$. The next 10 bytes of this buffer
will represent the account nunber, and wll be referenced by the
variable AC$. The next 30 bytes will represent the address, and will be
referenced by the variable AD$. The last 40 bytes will represent the
description, and will be referenced by the variabl e DES$.

More than one field statenent may correspond to the sane buffer. Variable
nanes used in a FIELD statenent may only be used to pass information to or
retrieve information from the buffer. Using fielded variables for any
ot her purpose will break the link between the variable and the buffer, and
the variable will not be connected to the buffer until the original FIELD
statement is re-executed. For nore information on passing information to
and retrieving information from the disk, see OPEN, GET, PUT, LSET, RSET,
MKI'$, MKS$, MKD$, CVI, CVS and CVD.

CGET - Retrieve a record froma randomfile

The GET command is used to retrieve information froma randomfile. The
information that is retrieved is stored in the buffer that was used to
open the file. The syntax for the GET command is:

CET#, r
CET#

where # is the buffer nunber used to open the file, and r is the record
nunber you wsh to retrieve. Both # and r nay be nuneric constants or

nuneric expressions. |If the record nunmber (r) is not specified, the
conputer will increment the current record nunmber by one, after which it
will performa GET of the current record nunber. If no current record
nunber has been established, the conputer will performa GET of record

nunber one, and the current record nunber will be set equal to one.
Exanpl e

Suppose you have opened a file and fielded the corresponding buffer. The
buf fer nunber used is 3. One of the follow ng GET commands nmay be used
toretrieve the 17th record of the file

CGET3, 17
N&=2: N1%+16: GETNY6-1, N19%+1

After executing one of the above statenments, record 17 of the file wll
be contained in the designated buffer, and information dealing with this
record may now be accessed by referencing the variables used in the
FI ELD st at enent .

I NPUT# - Input information froma sequential file.

The I NPUT# statement is used to retrieve information froma sequentia
file. The syntax used with the I NPUT# command i s:

| NPUT#n, vari abl el, .. , vari abl eN
where n is t he buf f er nunber used to open the file, and
variablel,...,variableN are the variables used to store the information
retrieved.

Sequential files are created by specifying an OPEN'O'/OPEN'E' conmand,
foll owed by one or nore PRI NT# conmmands. After a sequential file has been
created, the information in it may be accessed by using the OPEN'I" and

| NPUT# commrands. The | NPUT# conmand can be thought of as perfornming a
function simlar to the |INPUT command, the exception being that the
information is not entered fromthe keyboard. Rather, it is retrieved from
the disk. Like the INPUT comrand, | NPUT# can only be executed fromwthin
a program and cannot be executed fromthe Basic Ready pronpt.

The variable types used in an |NPUT# statenent nust be the sane type of
vari abl e used when the information was witten to the file via the PRI NT#
conmand. At |east one variable mnust be specified with the | NPUT# conmand.
If multiple variables are specified with the I NPUT# command, they mnust be
separated by commas.

After execution of an [INPUT# comrand, the variable(s) specified will be
assi gned val ues corresponding to the data retrieved fromthe disk. If you
try to execute an INPUT# command after all of the data has been retrieved
fromthe file, an I NPUT PAST END error will be generated.

Exanpl e

Suppose a file called MYFILE/ SEQ was created using the OPEN'O and
PRI NT# conmands, and this file contains the follow ng pieces of data:

JONES
THOVAS
12
MALE

The foll owi ng conmands may be used to access this information

OPEN'I ", 1, " MYFI LE/ SEQ'
| NPUT#1, LN$, FN$, AG%
| NPUT#1, SE$

After the execution of the first two commands, the file MyFILE SEQ woul d
have been opened for sequential input, the variable LN$ would have been
assi gned the value "JONES', the variable FN$ would have been assigned
the value "THOVAS', and the variable AGbowuld have been assigned the
value 12. Note that the Ilast piece of datain the file ("MALE') would
not have been accessed by either of the first two conmands. However,

after the third command (I NPUT#1, SE$) has been executed, the variable
SE$ woul d be assigned a val ue of "NALE".

I NPUT# deals with data in a disk file in a special way. For nore

information on creating sequential files that are accessed by the | NPUT#
conmand, refer to OPEN ("0", "E' and "I") and PRI NT#.

I NSTR - Locate the position of a sub-string within a target string

The I NSTR command all ows you to search for a specified sub-string within a
given target string, and returns the position nunber in the target string
of where the sub-string was found. The syntax for the I NSTR conmand i s:

INSTR(starting position,target string, sub-string)

"starting position" is the point where you wish the search to begin in the
target string (e.g. start the search from the third character in the
target string). If not specified, starting position will default to 1.

"target string"” is the string you wish to search

"sub-string” is the string you wsh to search for wthin the target
string.

The starting position may be either a numeric constant or a nuneric
expression, and nmust represent an integer value in the range of 1 to 255
i nclusive. The target string and sub-string may be either string constants
or string expressions.

INSTR will begin the search of the target string for the sub-string from
the starting position specified (if no starting position is specified,
INSTR will begin the search fromthe first character of the target

string), and will return a nuneric value corresponding to the position in
the target string of where the first occurrence of the sub-string is
found. If the sub-string is not found in the target string, INSTR will
return a 0. If the sub-string to be searched for is a null string, |INSTR
will return the starting position of the search, as the null string is a
sub-set of any string.

O her occurrences may cause INSTR to return a zero. They are:
If the target string is a null string.

If the starting positionis a nunber greater than the Ilength of the
target string.

The following example will illustrate the use of the I NSTR conmand.
Exanpl e
Suppose you have the following lines in a program

A~="ROY IS A BOY":B$="OY": C$="ROY": D$="o0y" : E$="ROYI S"
A% | NSTR(A$, C3$)

BY%:| NSTR(2, A$, B$)

Y% NSTR(3, A$, B$)

D% | NSTR(2, A$, C3$)

E% | NSTR(A$, D$)

F%:| NSTR(A$, E$)

After executing the above lines, the follow ng variables will have been
assi gned these val ues:

A%1 B%=2 CF11 D%=0 E%0 Fo%=0

Note that the value of E% wll be 0. This is because the sub-string
("oy") isin lower case, and there are no lower case letters in the
target string. Also note that the value of F%w Il be $. This is because
the string "ROYIS'" does not appear in the target string (thereis a
space between the words ROY and IS in the target string).

KILL - Kill (Renpbve) a disk file fromthe directory

The KILL conmand will allow you to kill a file from a disk directory,
making that file inaccessible, and freeing up the space on the diskette
that the file consuned. The KILL command functions identically to the LDOS
Li brary command "KILL". The syntax for the KILL command is:

KILL"fil espec”

where filespec is any valid LDOS file specification. Filespec may be
represented as a string constant or a string expression.

Realize that if the filespec given with the KILL comand does not exist,
you will get the error nessage FILE NOT FOUND

Exanpl e

Suppose you wsh to renove the file MFILE DAT from the diskette
currently in drive 1, and free up the space consuned by that file. The
follow ng command will performthis function

KI LL" MYFI LE/ DAT: 1"

Realize that after the kill is performed, you will no longer be able to
access any information which was previously stored inthe file. Aso
note that since the filespec is being represented as a string constant,
it must be encl osed in quotes.

NOTE
VWen performng a KILL of a data file, the file in question mnust NOT be

in an OPENed state. The KILLing of an open file may cause certain parts
of the diskette in question to be totally inaccessible!

LI NEI NPUT - Input a line into one variable

The LI NEI NPUT conmmand is very simlar to the INPUT command. It wll allow
you to input information in fromthe keyboard to be stored in a variable.
The differences between the LINEINPUT command and the | NPUT comrand are as
fol |l ows:

No question mark will appear when the input is taken

Only one vari able may be assigned a val ue.

Al'l characters entered before <ENTER> is pressed will be assigned to the
variable specified (i.e. comms and quotes nmay be input from the
keyboard, and | eadi ng spaces are not ignored).

The syntax for the LINEI NPUT command i s:
LI NEI NPUT" pronpt i ng nessage"; vari abl e

The pronpting nmessage is optional; if wused, it nust be included within
gquotes, and nust be separated fromthe variable by a semcolon. If the
pronpting nmessage is not used, a semcolon cannot be used. As is the case
with the INPUT conmand, LINElINPUT cannot be issued fromthe Basic Ready

pronpt .
Exanpl e

Suppose that you wish to input a person's name and title into a program
and you w sh to separate the name fromthe title by wuse of a comma.
Using the LINEINPUT command, you may now input the comma from the
keyboard to be taken as part of the input The follow ng LINE NPUT
conmand may be used to acconplish this.

LI NEI NPUT"Enter Name, Title"; A$

VWen the conputer executes the above command, vyou will see the pronpt
"Enter Name, Title" appear, and there will be no question mark after the
pronmpt. The conputer will now be awaiting your input. If you answer this
pronmpt by typing in the response "JOHN JONES, PRESIDENT" , A3 wll be
assigned all characters that you have typed in, prior to pressing the
<ENTER> key.

LI NEI NPUT# - Input a line froma disk file into a variable.

The LI NEI NPUT# command will allow you to input a line froma disk file into a
vari abl e. It functions simlarly to the LI NEl NPUT command, wth the
exception being that the input is taken fromthe disk, rather than the
keyboar d.

The syntax for the LINE NPUT# command i s:
LI NE | NPUT#b , vari abl e

where b is the buffer nunber used when the file was opened, and variabl e
is astring variable used to stored the retrieved information.

LI NEI NPUT# differs fromINPUT# in several ways. As noted in the PR NT#
command, INPUT# will read information in from the disk until it encounters
a comm, a carriage return, the end of file, or the 255th character when
dealing with string information. Wien using LI NEI NPUT#, commas w Il not be
taken as delimters of the string, and hence may be included in the input
fromdisk. The LINEINPUT# of a variable will termnate when a carriage
return, the end of file, or the 255th character of a string is
encountered. As is the case wth [|NPUT#, LINEI NPUT# cannot be executed
fromthe Basic Ready pronpt.

Exanpl e

Assume the following data is stored in a disk file, and the file has
been opened using buffer nunber 1 (<cr> represents a carriage return).

JOHN JONES , PRESI DENT , ABC CORPCRATI ON<cr >

If the command LI NEI NPUT#1, A3 is used to input the above information, A$
woul d be assigned the val ue:

JOHN JONES , PRESI DENT , ABC CORPCRATI ON

Realize that all of the characters (including the conmmas) woul d be read
in and assigned to AS$.

If the command | NPUT#1, A% were used instead of LINEl NPUT#, the val ue of
A$ would be "JOHN JONES', as INPUT# will read information until it
encounters a comma. For nore information on how data is stored on the
disk in a sequential file, see PRI NT#.

LOAD - Load a BASIC programinto nenory

The LQAD conmand allows you to retrieve a BASIC programthat has been
stored on disk, and place it in the conputer's nenory so that it may be
executed or edited. The syntax for the LOAD command i s:

LOAD'fi | espec”, R

filespec may be represented as a string constant or a string expression.
If represented as a string constant, filespec nust appear wi thin quotes.

The R parameter is optional; if wused, the program to be |oaded will be
executed after it is loaded, and all open files wll remain open.
Performing a LOAD without the Roption wll cause any open files to be
cl osed.

Loading a program will always overwite any program in nenory with the
programto be |oaded. Basic progranms cannot be concatenated with the LOAD
conmand (see MERGE for program concatenation). The LOAD command may be
given fromthe BASI C Ready pronpt, or can be issued from wthin a program
If issued fromwithin a program the programissuing the LOAD command wil |
be overwitten by the program to be |oaded, and execution wll be
t er m nat ed.

Exanpl e
LOAD' MYPROGE BAS"

After execution of this command, any program which was in menory will be
repl aced by the program MYPROG BAS.

LOC - Get current record nunber

The LOC command is used primarily with randomfiles, and will return a
value corresponding to the current record nunber of the given file. The
syntax for the LOC command is:

LOC(#)

where # represents the buffer nunber used to open the file in question. #
may be either a nuneric constant or a nunmeric expression, and nust
correspond to an open file.

Wen atile isin an open state, the conputer maintains sonme contro
information dealing wth that file. One piece of information that s
available to the user is the record nunber currently being dealt with. The
LOC command will return the current record nunber that the conputer has
accessed. If no record in an open file has been accessed, LOC will return
t he val ue 0.

Exanpl e

Suppose you have opened a file using buffer nunber 2, and have fielded
the buffer accordingly. If the foll ow ng conmands are executed:

GET2, 17
AY%LOC(2)

the variable A% w Il be assigned the value 17

LOF - Get |ast record nunber

The LOF command is used primarily wth randomfiles, and will return a
val ue corresponding to the last record nunber of the given file. The
syntax for the LOF command is:

LOF(#)

where # is the buffer nunber used to open the file in question. # may be
either a nuneric constant or a numeric expression.

The LOF conmand provides a neans of determ ning the nunber of records that
have been witten to a randomfile. Note that if a file has been
pre-created using the CREATE library conmand, LOF will return a nunber
corresponding to the highest record nunber actually witten to, not the
nunber of records that have been pre-created.

Exanpl e

Suppose you have a file named MYFI LE/ DAT, and the hi ghest record nunber
witten to is record nunber 43. If the file has been opened using buffer
nunber 3, and has been fielded accordingly, the follow ng conmand wil |
result in the variable A% being set equal to 43.

AY%LOF(3)

LSET - Place data into the buffer assigned to an open file

The LSET conmmand wll allow you to place information in the buffer
associated with a randomfile, prior to witing the information in the
buffer out to disk. It is used primarily in conjunction with randomfiles.
The syntax for the LSET command is:

LSET fielded string variabl e=val ue

fielded string variable is the variable used in the FIELD statenment that
points to the location in the buffer where the data is to be placed.

value is the value that you wsh to place in the buffer, and nust be a
string constant or a string expression

VWen dealing with randomfiles, the FIELD statenment is used to set up and
partition the buffer associated wth the file. String variables are used
in the FIELD statenent to designate various slots for information storage
and retrieval in the buffer. The LSET command allows you to place
information in these slots in the buffer, prior to witing the information
out to disk.

The LSET command will left-justify the information in the buffer. That is
to say, if the length of the string to be placed in the buffer is |ess
than the length allocated for the particular slot, trailing spaces will be
inserted at the end of the string in the buffer. This will nake the string
in the buffer the sane length as specified in the FI ELD statenent.

If the length of the string to be LSET into the buffer is greater than the
fielded length, the left nmost part of the string will be placed in the
buf fer, and any characters to the right of the total allocated space wll
be truncated. See RSET to right-justify a string into the buffer.

The commands MKI$, MKS$, and MKD$ are also used in conjunction with the
LSET statenent. Because the buffer is fielded in terms of string
Variables, only string values may be LSET into the buffer. The MI$, MKSS$,
and MKD$ commands are used to change nuneric data into conpressed string
representati ons of nunbers, and will create strings of 2 bytes, 4 bytes,
and 8 bytes respectively. Wien performng an LSET wusing the MKI$, MS$ or
MKD$ conmmands, the length of the fielded variable to be LSET nust be at
| east 2 bytes, 4 bytes, or 8 bytes, respectively. For nore information on
commands that are used with LSET, refer to the comands MI$, MD$, MKSS,
and FIELD, and the exanpl e bel ow.

Exanpl e

Suppose you have a file called MYFILE/ DAT, and have opened the file to
have record lengths of 45 bytes. In addition, assume that the buffer
corresponding to the file (buffer nunber 1) has been fielded wth the
following statenent, and the variables |isted bel ow have been assigned
t he gi ven val ues:

FIELD 1, 31 AS NA$, 2 AS A2%, 4 AS A4$, 8 AS A8%
NVB="JOHN JONES, PRES| DENT": A29592: Ad! =23. 79: A8#=123498. 63

The LSET statements you nmay use to place these values into the buffer
may | ook like this:

LSET NA$=NMB

LSET A2$=MKI $(A2%
LSET A4$=NKS$(A4l)
LSET A8$=MKDS(A8#)

The values of the variables A2% A4!, and A8# will be stored in the
slots in the buffer pointed to by the variables A2$, A4$, and A8S$,
respectively. They wll be stored as conpressed string representations
of the values the variabl es have been assi gned.

The value of NMB will be stored in the slot in the buffer pointed to by
the variable NA$. Realize that since the length of NMB is 21 characters,

the last 10 characters of the slot in the buffer pointed to by NA$ will

be spaces (CHR$(32)). If the length of NM6 would have been |onger than
31 characters, the left-nmost 31 characters would have been placed in the
buffer, and the remaining characters would have been truncated (in
essence, ignored).

The LSET command will typically be used prior to performng a data wite

to a random file. For nore information on perfornmng a data wite to a
randomfile, see OPEN, FIELD and PUT.

MERGE - Merge a programfromdisk with current programin nmenory

The MERGE command will allow you to nerge a programfile stored on disk
(in ASCIl) with a program resident in nmenory, with the resultant program
being stored in nmenory. The syntax for the MERGE conmand i s:

MERGE"fi | espec”

where filespec represents a BASIC programstored on disk in ASCI (For
nmore information on storing BASIC prograns on disk in ASCII, see SAVE)

Fil espec may be represented as a string constant or a string expression.
If represented as a string constant, filespec nust be contained within

quot es.

The MERGE command will read in (line by Iine) the program fromdisk, and
nmerge these lines in with the existing program Any |line nunber in the
program to be nerged that does not exist in the programin nmenory will be
added to the program in nenory. Any line nunber in the programto be
merged that does exist in the programin nenory will overwite the line in
nenory.

The MERGE command provides for an easy way to nmerge subroutines which are
conmon to several different programs into these prograns w thout always
having to type in the subroutine. The following exanple will illustrate
how t he MERGE command functi ons.

Exanpl e

Suppose you have a programwhich is resident in nmenory, and this program
consists of the follow ng statenents:

10 FOR L=1TO100
20 PRI NT L
30 NEXT L

Assunme al so that you have a program naned NYPROG ASC stored in ASCI1 on
di sk, and this program Consists of the foll ow ng statements:

5 DEFINT A-Z

10 FORL=1TC600

25 "TH S LINE HAS BEEN MERGED I N
40 GOTO 10

If you wish to nerge the program MYPROG ASC w th the programcurrently
in menory, you may do so by issuing the foll owi ng comrand:

VERCE " MYPROG ASC'

By giving the above conmand, the program resident in menory wll be
changed to the foll ow ng:

5 DEFINT A-Z

10 FORL=1TC600

20 PRI NT L

25 "TH S LINE HAS BEEN MERGED I N
30 NEXT L

40 GOTO 10

Before nerging in a program you should nake sure that there is enough
free menory for the programto be merged in. Also, note that the MERGE
command is wusually issued from the BASIC Ready pronpt. However, if

i ncorporated within a program the MERGE will be done, but execution of

the programw || cease.

M D$= - Replace a portion of a string

The MD$= command will allow you to perform a character for character
repl acenent of any characters wthin a string MD$=is the only BASIC
function which nmay be used on the Ileft-hand side of the equal sign. The
syntax for the M D$= command is:

M D$(string value,starting position,length)=replacenent string

"string value" may be either a string constant or a string expression, and
represents the target string for the replacenent.

"starting position is the place in the string value where the repl acenent
is to start. This nmay be either a numeric constant or a nuneric
expr essi on.

"length" is the nunber of characters to be changed. This may be either a
nuneric constant or a nunmeric expression. The length paraneter is
optional; if omtted, the nunber of characters to be replaced wll be
determ ned by the repl acenment string.

"repl acenent string" is the string you wsh to replace the specified
portion of the <current string with. This may be either a string constant
or a string expression.

The M D$= command will performa character for character replacenent on a
given string with the replacenent string. It may not be wused to |engthen
or shorten an existing string. If the |length paraneter is not specified,
t he nunmber of characters involved in the replacenent will be determ ned by
the length of the replacenment string. If the length paraneter differs from
the length of the replacenent string, one of several things may happen

If the length paraneter is less than the |l ength of the replacenment string,
the length paraneter will take precedence, and only the |[|eft-nost nunber
of characters as specified in the length parameter will be changed.

If the length paraneter is greater than the length of the replacenent
string, the replacenent string wll take precedence, and only those
characters specified in the replacenent string will be changed.

If the paraneters specified in the MD$= command woul d cause the origina
string to beconme larger, only those characters up to the end of the
original string would be changed, and the length of the string would
remai n unchanged. |In essence, the extra characters at the end of the
repl acement string would be ignored.

The fol |l owi ng exanpl e should clarify how the M D$= conmand functi ons.
Exanpl e

Suppose you have a string variable A$ set equal to the value "THIS IS
I T". The following MD$= commands woul d have these affects on AS$.

M D$(A$, 3, 2) =" AT" ---> A$ woul d change to "THAT IS I T
M D$(A$, 6, 2) =" WAS" ---> A$ woul d change to "THS WA IT"
M D$(A$, 3,8)="AT"S IT" ---> A$ would change to "THAT' S ITT"
M D$(A$, 9, 3) =" ALL" ---> A$ woul d change to "TH'S IS AL"

MKD$ - Change a numeric value into an 8 byte conpressed string

The MKD$ command (MaKe Double precision string) wll change a nuneric
value into an 8 byte string which is a conpressed representation of the
value. This conmmand is used primarily with the LSET and RSET commands to
pl ace nuneric data into the buffer associated wth an open randomfile.
The syntax for the MKD$ command is:

MKD$(nunreri ¢ val ue)

where nuneric value may be either a numeric constant or a nuneric
expression. Nuneric value can represent any value which may be assigned to
a double precision variable. Up to 16 significant digits will be
mai ntai ned. To convert an 8 byte conpressed string representation of a
nunber back to a nuneric value, use the CVD comand.

Since only strings may be stored in the buffer associated with an open
randomfile, there exists a need to change nuneric data into a string
form MD$ provides a way to change nuneric data into a string. The string
formed by MKD$ will always be 8 bytes in Ilength, regardl ess of the actua
val ue to be converted. The resultant string val ue obtained when performng
an MKD$ command will be the conpressed formof a nunber, contained in an 8
byte string. After a numeric value has been changed into an 8 byte
conpressed string, it may then be placed into a buffer via the LSET and
RSET commands. (Note: This is not the same as the STR$ conmmand, as the
STR$ comand produces an ASCIl string, not a conpressed string
representation of a nunber.)

Exanpl e

Suppose you have opened and fielded a randomfile, and wish to place a
double precision value into the buffer. The fielded variable you are
dealing with is A8%, and the value you wish to place in the part of the
buffer pointed to by A8% is contained in the variable A8#. The followi ng
conmand w |l cause an 8 byte conpressed string representation of the
value stored in A8# to be witten to the portion of the buffer pointed
to by A8$.

LSET A8$=NKDS(AB#)

Note that the fielded length of the variable A8% nmust be at |east 8
bytes, and in nost cases will be exactly 8 bytes.

MKI$ - Change a nunmeric value into a 2 byte conpressed string

The MKI$ command (MaKe Integer string) will change a numeric value into a
2 byte string which is a conpressed representation of the value. This
conmand is used primarily with the LSET and RSET commands to pl ace nuneric
data into the buffer associated with an open randomfile. The syntax for
the MKI$ command is:

MKI $(nunreri ¢ val ue)

where nuneric value nmay be either a numeric constant or a nuneric
expression. Nuneric value nust be wthin the range of -32768 to +32767
inclusive. If numeric value is not an integer, any nunbers to the right of
the decimal point will be truncated. To convert a 2 byte conpressed string
representation of a nunber back to a nuneric value, use the CVI conmand.

Since only strings may be stored in the buffer associated wth an open
random file, there exists a need to change nuneric data into a string
form MI$ provides a way to change nuneric data into a string. The string
formed by MKI$ wll always be 2 bytes in length, regardl ess of the actua
val ue to be converted

The resultant string value obtained when performng an MI$ command will
be the conpressed formof an integer, contained in a 2 byte string. After
a nuneric value has been changed into a 2 byte conpressed string, it may
then be placed into a buffer via the LSET and RSET conmands. (Note: This
is not the sane as the STR$ command, as the STR$ command produces an ASCl |
string, not a conpressed string representation of a numnber.)

Exanpl e

Suppose you have opened and fielded a randomfile, and wish to place an
i nteger value into the buffer. The fielded variable you are dealing with
is A2%, and the value you wish to place in the part of the buffer
pointed to by A2$% is contained in the variable A2% The followi ng

conmmand wll cause a 2 byte conpressed string representation of the
value stored in A2%to be witten to the portion of the buffer pointed
to by A2$.

LSET A2$=MKI $(A2%

Note that the fielded length of the variable A2$% nust be at |east 2
bytes, and in nost cases will be exactly 2 bytes.

MKS$ - Change a nuneric value into a 4 byte conpressed string

The MKS$ command (MaKe Single precision string) wll change a nuneric
value into a 4 byte string which is a conpressed representation of the
value. This conmmand is used primarily with the LSET and RSET commands to
place nuneric data into the buffer associated wth an open randomfile.
The syntax for the MKS$ conmmand is.'

MKS$(nuneri ¢ val ue)

where nuneric value nmay be either a nunmeric constant or a nuneric
expression. Nuneric value can represent any value which nmay be assigned to
a single precision variable. Up to 6 significant digits will be
mai nt ai ned. To convert a 4 byte conpressed representation of a nunber back
to a nuneric value, use the CVS conmand

Since only strings may be stored in the buffer associated with an open
random file, there exists a need to change numeric data into a string
form MKS$ provides a way to change nuneric data into a string. The string
formed by MKS$ will always be 4 bytes in length, regardl ess of the actua
value to be converted. The resultant string val ue obtained when performng
an MKS$ conmand will be the conpressed formof a nunber, contained in a 4
byte string. After a nunmeric value has been changed into a 4 byte
conpressed string, it may then be placed into a buffer via the LSET and
RSET commands. (Note: This is not the sane as the STR$ command, as the
STR$ command produces an ASCl | string, not a conpressed string
representation of a nunber.)

Exanpl e

Suppose you have opened and fielded a randomfile, and wish to place a
single precision value into the buffer. The fielded variable vyou are
dealing with is A4$, and the value you wish to place in the part of the
buffer pointed to by A4$ is contained in the variable A4!. The followi ng

conmmand wll cause a 4 byte conpressed string representation of the
value stored in A4! to be witten to the portion of the buffer pointed
to by A4$.

LSET A4$=NKSS$(Ad!)

Note that the fielded length of the variable A4$ nust be at least 4
bytes, and in nost cases will be exactly 4 bytes.

OPEN - Open a random sequential disk file

The OPEN command allows you to open randoni sequential data files in order
that input/output may occur between the conputer and the given file. The
general syntax for the OPEN comrand is:

OPEN'file type", buffer nunber,"fil espec”,record | ength

"file type" is the type of file you wsh to deal with (random or
sequential). It may be represented as a string constant encl osed within
guotes, or as a string expression

"buffer nunmber" is the nunber of the buffer you wsh to use to perform
the input/output fromto the disk. This may be either a nuneric constant
or a nuneric expression, and nust be an integer value within the range
of 1 to the total number of active files declared when entering LBASIC
i ncl usi ve.

"filespec" is the nane, extension, password and drive nunber of the file
to be opened. Filespec must conform to all of the rules governing LDOS
filespecs. It may be represented as a string constant or a string
expr essi on.

"record length" pertains to randomfiles only, and will determne the
record length wused when accessing the file. It nust be an integer val ue,
and may be represented as either a nuneric constant, or a nuneric
expr essi on whose val ue nust be in the range of 0 to 255, inclusive. This
paraneter is optional; if not used, record length will default to 256.
If record length is specified as 0, it will be assuned to be 256. If the
paraneter BLK=OFF is specified when entering LBASIC, record Ilength
cannot be specified in an OPEN statement, and will default to 256

Note: Devices may be substituted for files when using an OPEN'I" or
OPEN'O' command. Opening devices is an advanced feature of LBASIC, and
is only nmentioned here as an additional inplenmentation of the OPEN

comand.

In order to wite information to and retrieve information froma disk
file, the file must be opened using the OPEN command. The OPEN comand
establishes the capability of reading fromand witing to a disk file by
creating a file control block (FCB). This FCB contains information needed
by the conputer, so that the conputer may interact with the disk file. In
addition, the OPEN command establishes a buffer which is used by the
conputer as a tenporary storage place for information that wll pass
bet ween the conputer and the disk file.

There are two types of files available to you when storing information in
a disk file; sequential files and randomfiles.

Sequential files are file types that allowfor accessing data in a
speci fied sequence. That is to say, if you wsh to retrieve the 10th piece
of information in a file, you nust read in the nine data itens preceding
the itemin question before it nay be accessed.

Random files are file types that allow you to directly access any piece of
information in a file, regardless of the physical Ilocation of the data
within the file.

It is beyond the scope of this manual to discuss the techniques involved
in creating and accessing information in random and sequential files. What
will be provided for you here is the syntax needed to open all types of
random and sequential files. For the novice, it is strongly recomended
that supplementary nmaterial be obtained for the purpose of learning filing
t echni ques.

|l MPORTANT NOTE

It is strongly advised that no data file be in an open state at any given
time using nore than one buffer. LBASIC will allow you to open the sane
file at the same time using nmore than one buffer; however, this practice
may |lead to the destruction of data files on the diskette in question!

Openi ng sequential files.

There are two basic nodes available for use when dealing with sequentia
files; the input node, and the output node. The followi ng |list shows al
of the different OPEN comrands that may be issued when dealing wth
sequential files.

OPEN' 1" --> (pen an existing sequential file for input

OPEN'O' --> (pen a sequential file for output

OPEN' QO --> (pen an existing (old) sequential file for output
OPEN' ON' --> (pen a non-existing (new) sequential file for output
OPEN'E" --> (pen for output and extend a sequential file

OPEN' EC' --> (pen for output and extend an existing sequential file

OPEN' EN' --> (pen for output and extend a non-existing sequential file

The input node of sequential files allows you to input information froman
existing file. No output to the file may be done if it has been opened for
input. The file to be opened for input nust exist, or the OPEN'I" comrand
will return a FILE NOT FOUND error. Once the file has been opened,
information may be retrieved from it wusing the |INPUT# and LI NEl NPUT#
conmands.

The output node of sequential files allows you to output information to
the file. No input fromthe file may be done if it has been opened for
output. Once the file has been opened, information may be witten out to
it using the PRI NT# command. There are six types of output nodes avail able
for use with sequential files.

The OPEN'O' output mnode functions in the following manner. If the file
opened does not exist, it wll be created, and information wll be
witten to the file starting at the first byte of the file. If the file
opened does exist, any information previously stored in the file will be
lost, as the newinformation to be placed in the file wll be witten
over the existing information, starting at the first byte of the file.

The OPEN'OCO" output node functions in the following manner. If the file
opened does not exist, a FILE NOT FOUND error will be generated, and the
file wll not be created. If the file opened does exist, OPEN'CO" will
function identically to OPEN'O'" in the case where the file already
exi st s.

The OPEN'ON' output mode functions in the following manner. |If the file
al ready exists, you will not be allowed to open the file, and the error
FI LE ALREADY EXISTS will be generated. The existing file wll not be
altered in any way. |If the file does not exist, it will be created, and

information will be witten to the file starting wth the first byte of
the file.

The OPEN'E" output mnode functions in the following manner. If the file
does not exist, OPEN'E" wll function identically to OPEN'O'. If the
file already exists, the file wll be opened, and any information that
will be witten to the file will be appended to the end of the existing
information. The file will be extended to include both the old and the
new i nfornati on.

The OPEN'EOQ' output mode functions in the following manner. If the file
does not exist, a FILE NOTI FOUND error will be generated, and no file
will be created. If the file already exists, the file will be opened,
and any information that will be witten to the file will be appended to
the end of the existing information. The file wll be extended to
i ncl ude both the old and the new i nformation.

The OPEN'EN' node functions identically to the OPEN'ON' output node.

Exanpl e - Opening sequential files

Suppose that you wished to open a sequential file named MYDATA SEQ
using buffer nunmber 1. The statenent used to open the file for input
woul d be as foll ows:

OPEN "1", 1, " MYDATA/ SEQ'

If you wished to open the sanme file for output using buffer nunber two,
one of the foll owi ng commands coul d be used, dependi ng on whether or not
you request that the file be a newfile or an old file, and whether or
not you wish to extend the file:

OPEN'O', 2, " MYDATA/ SEQ'
OPEN'QO', 2, " MYDATA/ SEQ'
OPEN'ON', 2, " MYDATA/ SEQ'
OPEN'E", 2, " MYDATA/ SEQ'
OPEN'ECQ', 2, " MYDATA/ SEQ'
OPEN'EN', 2, " MYDATA/ SEQ'

Openi ng random fil es

Unl i ke sequential files, when dealing with a randomfile, you have the
capability of reading from and witing to the file wusing only one OPEN
conmand. The statements PUT and CGET differentiate between witing to the
file and reading from the file, respectively. There are three different
types of OPEN statenents that may be executed when opening a random file.
They are:

OPEN'R’ --> (pen a random file whether or not it exists.
OPEN'RN'" --> Open a randomfile only if it does not exist.
OPEN'RO'" --> (Open a randomfile only if it already exists.

The OPEN'R' node functions in the followng manner. The file specified
will be opened whether it exists or not, and will be <created if it does
not exist. After the file has been opened, the buffer used in the OPEN
statement may be fielded using the FIELD statenment, and records may then
be retrieved fromor placed into the file via the PUT and GET statenents.

The OPEN'RN' nmode functions in the followwng manner. |If the file already
exists, you wll not be allowed to open it. The file wll remin
untouched, and the error FILE ALREADY EXISTS will occur. If the file does
not exist, it wll be created, and the OPEN'RN' command will function in

t he same manner as the OPEN'R' conmand.

The OPEN'RO' node functions in the following manner. |If the file does not
exist, no file will be created, and the error FILE NOTI FOUND wll occur.
If the file does exist, OPEN'RO" will function in the sane nanner as
OPEN'R".

Exanpl e - Qpening randomfil es

Suppose you wish to open a randomfile named MYDATA/ RND, using buffer
nunber 3, with record lengths of 52 bytes. One of the follow ng OPEN
conmands may be used to open the file, depending on the specific
requi rements needed by the wuser (i.e. open the file only if it does or
does not exist).

OPEN'R', 3, "MYDATA/ RND', 52
OPEN'RN', 3, "MYDATA/ R\D", 52
OPEN'RO', 3, "MYDATA/ R\D", 52

For nore information on wusing both random and sequential files, refer to
FI ELD, GET, PUT, LSET, RSET, |NPUT#, LI NEI NPUT#, and PRI NT#.

PRI NT# - Qutput data to a sequential file

The PRI NT# conmmand will allow you to output data to a sequential file. The
syntax for the PRI NT# command is:

PRI NT#buf f er nunber,list of constants and/or expressions

buf fer nunber is the buffer used to open the file. It may be expressed as
a nuneric constant or a nuneric expression.

list of constants and/or expressions contains the data that you wsh to
output to the file. Numeric constants, nuneric expressions, string
constants and string expressions may all be contained wthin this list. If
nore than one value is to be output to the file using a single PR NT#
statement, these values nust be separated by sone type of delimter. The
uses of delimters in a PRINT# command wll be explained throughout this
section.

The PRINT# command is wused in conjunction with any type of OPEN'O' or
OPEN'E" conmand. After a file has been opened, data may be output to the
file viathe PRINT# conmand. Once a file has been created using the
OPEN'O'/ OPEN'E" and PRINT# commands and then closed, the information in
the file may be accessed using the OPEN11l" and | NPUT#/ LI NEI NPUT# conmands.

In nost cases, data witten to a sequential file is stored in ASCI
format. For numeric data, a sign byte will always precede the nuneric
information. If the value is positive, the sign byte will be represented
by a space. A trailing space will always followthe ASCI| representation
of the value. Keeping the above in mnd, the mnimm amunt of bytes
required to store a nuneric value in a sequential fileis 3 (the sign
byte, a digit, and the trailing space).

For string data, all characters included in the string value wll be
witten to the file, and no preceding or trailing characters will be
witten to the file. Special considerations do need to be taken into
account when witing string values to a sequential file, as there are some
peculiarities involved with the [INPUT# conmand when trying to access
string information stored in a sequential file. These special cases wll
be pointed out throughout this section

The PRINT# comand resenbles the PRINT command in many ways wth respect
to how information is physically witten to the file. Sonme of the
punctuation wused in the PRI NT# conmmand will cause data to be witten to
the file in much the same way that this punctuation causes data to be
printed to the screen using the PRI NT command.

Punctuation is very inportant when using the PRI NT# command. The fol | owi ng
wi Il describe the punctuation which is allowed wth the PRI NT# command,
and the effects of using different punctuation.

Use of punctuation with the PRI NT# command.

Different types of punctuation used to separate values to be output in a
PRI NT# statenment will cause the data to be physically witten to the
file in different ways. The following list shows the punctuation
required to separate values contained in a PRI NT# statenent.

, - conmma
; - sem col on

, - explicit coma

VWhen separating output data contained in a PRI NT# statenment, you nmay use
either a comma or a semcolon. A semicolon will cause the next piece of
information to be witten directly after the preceding data. A comma
wi Il cause the next piece of informationto be witten at the next
avail able "tab" position in the file. Tab positions will be denoted by
16 byte blocks, starting fromthe last occurrence of a carriage return
(ODH) in the file.

In some cases, the explicit comma is wused after string information has
been witten to the disk, to demark the end of the string value fromthe
begi nning of the next piece of information to be witten out.

The following exanples will illustrate the methods used to wite data to
a sequential file, as well as the occurrences that will result when this
data is to be retrieved.

Exanple 1 - Witing nuneric data to a sequential file.

Suppose you wsh to wite two nuneric values out to a sequentia
file, wusing one PRINT# command. The file you wishto wite these
values Qut to is nanmed DATALl/ SEQ and has been opened using buffer
nunber 2. The variables you wsh to wite out to the file are A%
which has been assigned a value of 362, and B!, which has been
assigned a value of -2618.7. The follow ng PRI NT# command may be used
to wite these values out to the file:

PRI NT#2, A% B

The above statenment will cause the values 362 and -2618.7 to be
witten to the file in ASCII format. The image produced on the disk
by this PRI NT# statenent is shown below (Note that throughout the
rest of this section, the image produced by the exanple PRI NT#
statements will always follow the PRI NT# statement. The inmage shown
will be simlar to the LDOS LIST (H) library conmmand; each ASCl
character will be displayed with its corresponding hex value shown
bel ow t he character.)

3 6 2 - 2 6 1 8 . 7
20 33 36 32 20 2D 32 36 31 38 2E 37 20 0D

Note the sign byte preceding each value, and the trailing space
followi ng each value. Also note that the last byte witten to the
file is a carriage return (~DH). A carriage return will always be
witten to the file after the last itemlisted in a PR NT# statenent

Realize that a sem colon was used to separate the variables A% and B!
in the PRINT# command. A conma coul d have been used instead; however,
the image of the data on the disk would have changed to the foll ow ng
if a comma woul d have been used instead of a sem col on

3 6 2
20 33 36 32 20 20 20 20 20 20 20 20 20 20 20 20

- 2 6 1 8 . 7
2D 32 36 31 38 2E 37 20 0D

Notice the series of spaces following the nunber 362. These will be
witten to the disk as a result of a comma being used to separate the
variables A% and B!. As was noted earlier, when using a coma to
separate variables in a PRINT# statenent, the value following the
conma wWill be witten to the next tab position (the beginning byte of
the next block of 16 bytes). As depicted in the above displays, much
disk space will be wasted in witing to sequential files if the
values in a PRINT# statenent are separated by commas instead of
sem col ons.

Exanple 2 - Witing string data to a sequential file.

Suppose you wish to wite 3 string values out to a sequential file,
usi ng one PRI NT# command. The file you wish to wite these val ues out
to is named DATA2/ SEQ and has been opened using buffer nunber I. The
variabl es you wish to wite out tothe file are A$ (which has been
assi gned the value "AMBER'), B$ (which has been assigned the value
"BROMN'), and the string constant "GRAY'. The follow ng PRI NT#
conmand may be used to wite these values out to the file:

PRINT#1, AS; ", "1 BS; ", " " GRAY"

The above statenent will cause the values "AMBER', "BROWN' and " GRAY"
to be witten to the file. The image produced on the disk by this
PRI NT# statement is shown bel ow.

AMBEIR, B ROWN, GRAY
41 4D 42 45 52 2C 42 52 4F 57 4E 2C 47 52 41 59 0D

There are many things to be noted in this exanple. The nost prom nent
of these is the wuse of the explicit comma (","). You will note from
t he above display that along with the string values, conmas were al so
witten out to the file (since they were enclosed wthin quotes as
part of the list of values to be witten out). In nost applications
dealing with witing strings out to sequential files, you will need
to incorporate the explicit comma within the list of values to be
printed out by the PRINT#. The reason behind this stenms fromthe way
| NPUT# deals with retrieving information froma sequential file.

Before continuing with nore exanples on the use of PRINT# a brief
di scussion of using INPUT# with files created by PRINT# is in order

How | NPUT# ties together with PRI NT#

As shown throughout this section, the punctuation used in the PRI NT#
conmand is very inportant, and determ nes the manner in which | NPUT#
will access this information. |NPUT# deals with retrieving nunmeric
data in a different fashion than it does with string data.

VWhen | NPUT# requests the input of a nunmeric variable, it will begin
reading from the last accessed byte in the file. Any |eading spaces
that are encountered wll be ignored. Once INPUT# finds a non-space
character, it will read wuntil it encounters either a space or a
delimter, and the value assigned to the variable will be determ ned
by performing a VAL function on the characters read in. Thisis to
say that any characters nmay be input into a nuneric variable, and the
inputting of string values into a nuneric variable will not cause a
TYPE M SMATCH error.

VWhen | NPUT# requests the input of a string variable, it wll begin
reading fromthe | ast accessed byte in the file, and proceed until it
finds a non-space character. Once it finds a non-space character, it
will read until it encounters a delimter, and the value assigned to

the variable will be all characters read in fromthe first non-space
character to the delimter. Note fromthe above description that any
"l eadi ng" spaces which are present in the data file for the data
element in question will be ignored by I NPUT#, and the val ue assigned
to the string will never have | eadi ng spaces.

In all cases, when | NPUT# requests an input of a variable, the input
will be termnated when a delinmiter character is read in. For nuneric
inputs, delimters can be represented by either a space, a comm, or
a carriage return (ODH). In nost cases, a conma should not be used as
the delimter for a nuneric input.

For string inputs, a delimter can be represented by either a comma
or a carriage return. Realize that for any input of a variable, if
the nunber of characters read in will exceed 255, the input of the
variable will termnate after the 255th character has been accessed.

One point to noteis that in nost cases, two delimter characters
shoul d not appear together in a sequential file. This occurrence wll
cause unpredictable results when trying to input information fromthe
file.

From the above paragraphs, it can be seen that in any one physica
PRI NT# statenent, if values are to be witten Qut following a string
val ue, they mnust be separated fromthe string value by use of the
explicit comma. The general format which is recomended to perform
such a data wite is as foll ows:

PRI NT#b, . ..;string value;","; next val ue;..

Exanple 3 - Witing nuneric and string data to a file.

Suppose you wish to wite several string and nuneric values out to a
sequential file using the same PRINT# statenment. The file you wish to
wite these values out to is nanmed DATA3/ SEQ and has been opened
usi ng buffer nunber 2. The string values you wish to wite Qut are
contained in the variables A$ (which has been assigned the value
"ANN'), B$ (which has been assigned the value "BETTY") and C$ (which
has been assigned the value "CAROL"). The nuneric values you wish to
wite Qut are contained in the variables A% (which has been assi gned
a val ue of 2~), B% (which has been assigned a value of 32), and C%
(which has been assigned a value of 23). The following wll show a
PRI NT# statenment which nmay be used to wite these values out to the
file, and the associated image that will be witten to the disk as a
result of perform ng the PRI NT#.

PRI NT#2, A% A$; " ,";B%BS; ", "; CN C$
2 0 A N N , 3 2 B ET T
20 32 30 20 41 4E 4E 2C 20 33 32 20 42 45 54 54
Y |, 2 3 C AR O L

59 2C 20 32 33 20 43 41 52 4F 4C 0D

Pl ease note fromthe above example that no explicit comm needs to
follow nuneric data. Also note that since C$is the last variable to
be witten out in this PRINT# command, no explicit conma is needed
after it, as a carriage return will always be witten out to the file
after the last variable in a PRINT# command. This carriage return
will serve as the delimter for subsequent PRI NT# conmands.

This concludes our discussion of the PRINT# command. It is reconmended
that test files be created by the user in order to explore the results of
various PRINT# statenments. After sequential files have been created, they
may be exam ned by use the LDOS LIST (H) command. For further information
see OPEN, | NPUT#, and LI NEI NPUT#.

PRI NT# USING - Qutput data to a sequential file using a specified fornmat

The PRINT# USING command will allow you to output data to a sequentia
file using a specified format. The syntax for the PRI NT# USI NG conmand i s:

PRI NT#buf f er nunber, USING format string;list of val ues

buf fer nunber is the buffer used to open the file. It may be expressed as
a nuneric constant or a nuneric expression.

format string is the format you wish to use to wite the Ilist of values
out to the file. It my be represented as either a string constant or a
string expression.

list of values is the same as list of constants and/or expressions as
defined in the PRI NT# conmand.

The PRINT# USING comrand wll allow you to output data to a sequentia
file in the format specified by the format string. Any format string which
is allowable in the PRINT USING command wll also be allowable in the
PRI NT# USI NG conmand, and will function in an identical manner. For nore
information on allowable format strings, refer to PRINT USINGin the ROM
Basi ¢ manual . (For nore information on the specifics involved in witing
information out to a sequential file, see PRINT#.)

Exanpl e

Suppose you wish to wite three nuneric values out to a sequentia
file. The name of the file is DATA/SEQ and it has been opened using
buf fer nunber 1. The values you wish to wite out are contained in
the variables A% (which has been assigned a value of 25), B! (which
has been assigned a value of 13.73), and C% (which has been assigned
a value of -17). The format string you wish to use has been assigned
to the variable A$, and has the val ue:

BHH HHRH BHE HERH

The following wll showa PRINT# USING comrand that may be used to
wite out the above values, and the disk inage created by the PRI NT#
USI NG command.

PRI NT#1 , USI NGA$; A% Bl , C%

2 5 13 . 7 3 0 -1 7
20 32 35 20 20 20 20 20 20 31 33 2E 37 33 30 20 20 20 2D 31 37 0D

Note fromthe above exanple that the inage created on disk conforns
to the format string specified. Unlike the PRI NT# conmand, the use of
delimters to separate the values to be printed out is arbitrary.
That is to say, there is no difference in using a coma as a
delimter as opposed to a semi col on

PUT - Wite a record out to a randomfile

The PUT command is used to wite information out to a random file. The
information that is to be witten out to the file nmust have been placed
into the buffer that was used to open the file prior to being witten out
to the file. The syntax for the PUT comrand is:

PUT#, r
PUT#

where # is the buffer nunber used to open the file, and r is the record
nunber you wish to retrieve. Both # and r nmay be nunmeric constants or
nuneri c expressions.

If the record nunber (r) is not specified, the computer wll first
i ncrenent the current record nunmber by one, after which it will performa
PUT of the current record nunber. If no current record nunber has been
established, the conputer will performa PUT of record nunber one, and the
current record nunber will be set equal to one.

Exanpl e

Suppose you wish to output data to a random file. The file you w sh
to performthe output to has the nane FILE/ RND, and has been fiel ded
usi ng buffer nunmber 2. The record you wish to wite out to the file
is record nunber 23. Assune also that all of the values you wish to
wite out to the file have been placed into the buffer using the
proper LSET and RSET conmands. One of the follow ng PUT conmands may
be used to wite the information to the 23rd record of the file.

PUT2, 23
NY&=1: N1930: PUTNYe-1, N1% 7

After executing one of the above statenents, the information stored
in the buffer associated with the file FILEERND will be witten out
to the disk, and wll be placed in the file as representing the 23rd
record in the file. Once this information has been placed into the
file, it may be retrieved using the GET comuand.

For nore information on using PUT, see OPEN, FIELD, LSET and RSET.

RSET - Place data into the buffer assigned to an open file

The RSET command will allow you to place information into the buffer
associated with a disk file, prior to witing this information out to the
disk. It is wused primarily in conjunction with randomfiles. The syntax
for the RSET comand is:

RSET fielded string variabl e=val ue

fielded string variable is the variable used in the field statement that
points to the location in the buffer where the data is to be placed.

value is the value that you wsh to place in the buffer, and nust be a
string constant or string expression.

The RSET conmmand functions identically to the LSET command, wth the
foll ow ng exception. Rather than the information being placed into the
buffer left-justified, RSET wll place the information into the buffer
right justified. If the length of the string to be placed into the buffer
is less than the fielded length of the particular slot of the buffer
spaces will be inserted in front of the string in the buffer to make the
string in the buffer the sanme length as specified in the field statenent.

If the Ilength of the string to be RSET into the buffer is greater than the
fielded length, the right nost part of the string wll be placed in the
buffer, and any characters to the left of the total allocated space wll
be truncat ed.

For nore infornmation on howto utilize the RSET comand and the functions
it perforns, refer to the LSET conmand.

RUN - Load a Basic programfromdi sk and execute it

The RUN command will allow you to load an LBASIC programstored on disk
into the conputer's nenory, and imrediately begin execution of that
program The syntax for the RUN comrand is:

RUN'fi |l espec",fil e/variable parameter,|ine nunber

filespec is the name of the program that you wsh to be |oaded and
executed, and may be represented by any valid LDOS filespec. filespec may
be either a string constant or a string expression. |If filespec is not
i ncluded, the programcurrently in menmory will be executed.

file/variable paraneter is an optional paraneter, and is wused primarily
when LBASIC prograns are to be "chained" together. One of two different
paraneters are available. If the parameter Ris used, any files which are
currently open wll remain open when the new program is |oaded and
execut ed If the paraneter V is used, all open files will remain open, and
all variable assignnents will be maintained. This paraneter, if used, nust
be represented as a letter (R or V), and cannot appear within quote narks,
or cannot be represented by a string expression.

[ine nunber is an optional paranmeter, and is used to specify a |ine nunber
in the program where execution is to start. |[If not specified, execution
will beginwith the first Iline nunber of the new program |t mnust be
represented as a nuneric constant.

The RUN comrand may be issued from the Basic READY pronpt to |oad and
execute a program or may be wused fromw thin an LBASIC programto perform
a chaining of programs. |If the RUN command is given with a fil espec, any
programwhich is currently resident in nenory wll be overwitten, and the
program specified in the RUN command wi |l be | oaded and executed

If the RUN command is given with just a filespec (i.e. no additiona
paraneters are specified), no variables wll be retained, and any open
files will be closed.

If the RUN command is given with the R paraneter, all variables will be
| ost, but any files which were opened will remain open, and will utilize
the sanme buffer nunber. Realize that if the R paraneter is used, any open
files nust be re-fiel ded.

If the RUN comrand is given with the V paraneter, any established
variables will be maintained, and all open files wll remain open. There
are several points to be considered when using the V paraneter. In
addition to all files remaining open, the fielding of the buf f er
associated with the open file will remain intact. Hence, re-fielding is
not required. Any DEFinition statements (such as DEFINT and DEFSTR) nust
be re-established in the programto be chained. The CLEAR conmand shoul d
not be encountered in the programto be chained, as execution of a CLEAR
statement will close all open files and destroy any established vari abl es.

It should be obvious to the wuser that if the program to be chained is
| onger than the <calling program or wuses nore variables than the calling
program an OUT OF MEMCORY or QUT OF STRING SPACE error may occur. To
utilize this feature to its fullest capabilities, forethought nust go into
the determ nation of variable nanmes to be carried over fromone programto
anot her.

If the RUN command is given with the |ine nunber paraneter, the program
specified wll be | oaded, and execution will begin at the line specified.
Realize that the |Iine nunber specified nmust be an existing |ine nunber, or
an UNDEFI NED LI NE NUMBER error will be generated.

The RI'V and |ine nunber parameters nmay be specified individually, or they
may appear together in the RUN conmand. |[|f both paraneters are specified,
the R'V paraneter nmust physically conme before the |ine nunber paraneter.

Exanple 1

Suppose you have an LBASI C program naned MYPROG BAS, and this program
has been saved onto a disk which is currently in drive 1. One of the
following conmands may be given to load and execute the above

program

RUN' MYPROGE BAS: 1"
A$="MYPROG BAS: 1": RUN A$

After either of the above conmands are executed, any program
currently in nenmory will be overwitten, and the program MYPROG BAS
will be |oaded and executed. Any open files wll be closed, and any
establ i shed variables will be destroyed.

Exanpl e 2

Suppose you wsh to load and execute the program MYPROE BAS as
described in the above exanple, except that you wish execution to
begin at line ~in the program The follow ng conmand will cause
the programto be | oaded) and execution will begin at line ~

RUN' MYPROGE BAS: 1", 3000

Exanple 3

This example will illustrate howto use the V paraneter of the RUN
conmand to mai ntain variabl es between chained prograns. Listed below
will be tw prograns that reference each other (PROGL/BAS and
PROZ/ BAS). The sequence wll be started by issuing the comand
RUN'PROGL/ BAS'. Realize that both prograns nust have been saved on
disk prior to trying to execute either.

5 ' PROGL/ BAS

10 CLEAR 2000

20 DEFI NTA- Z: DEFSTRS

30 IF A=0 THEN S="PROGL/ BAS"
40 CLS

50 A=A+5

60 PRRNT"THIS IS "; S "A="; A
70 | F A>100 THEN END

80 S="PROG2/ BAS"

90 I NPUT" PRESS <ENTER> TO RUN PROZ2/ BAS'; S1
100 RUN'PROX/ BAS', V, 20

5 ' PROX2/ BAS

10 CLEAR 2000

20 DEFI NTA- Z: DEFSTRS

30 CLS

40 A=A+3

50 PRRNT"THIS IS "; S "A="; A

60 S="PROGL/ BAS"

70 I NPUT" PRESS <ENTER> TO RUN PROGL/ BAS'; S1
80 RUN'PROGL/ BAS', V, 20

Notice that in each of the RUN commands, the |line nunber 20 was
specified. This acconplishes two things. It causes execution to start
at line 20 of each program which will cause the CLEAR command in
both prograns to be bypassed. Also, Iline 20 nust be executed, as al
DEF type statenents nust be re-established when progranms are chained
using the V paranmeter. Although this is a very sinplistic exanple, it
should illustrate sone of the steps needed to perform program
chai ning while retaining variable assignnments.

SAVE - Save the LBASIC programresident in nmenory to disk

The SAVE command will allow you to save the programcurrently in nmenory to
a disk file. This will allow you to store progranms on disk for future use.
The syntax for the SAVE command i s:

SAVE" filespec”, A

filespec is the file specification you wish to assign to the programfile.
It may be represented as either a string constant or a string expression

the A parameter is an optional paraneter. If used, the programwll be
saved out to the file in pure ASCIlI format. If not specified, the program
will be saved out to the file in "conpressed" format.

As LBASIC prograns are being witten or edited, they are contained in the
conputer's nenory. The SAVE command provides a way to save LBASI C prograns
which are stored in menory out to a disk file, so that they may be
referenced at some later tine via the LOAD or RUN conmmand.

VWen the SAVE command is given, one of tw things wll happen. If the
filespec in the SAVE conmand represents a non-existing file, SAVE will
create a file wth the fil enanme, extension, and password specified, and
store in this file the Basic program currently in menmory. If the fil espec
in the SAVE command represents an already existing file, SAVE wll
overwite the existing file with the programin nenory.

VWen the A paraneter is not specified in a SAVE conmand, the programin
menory will be saved to a disk file in its conpressed form (i.e.
conpression codes will be used to represent the LBASIC commands and |ine
nunbers). If the A paraneter is specified in a SAVE comand, the program
will be saved to the disk file in pure ASCI (e.g. the comrand PRI NT wil |
take up five bytes of disk storage, one byte for each character).

Note: When wusing the A paraneter to save a program no line in the program

shoul d exceed 240 characters in length. |If a program is saved with the A
paraneter and a line in the programis |onger than 240 characters, the
programwill load up to the line which is |onger than 240 characters, and

the rest of the programw |l be inaccessible. A Drect Statement in File
error will also be generated.

It should be obvious that saving a programin ASCII w |l consunme nore disk
space than saving the sanme programin conpressed form but there are
certain situations where a programnust be saved in ASCII. One case where
you have to save a programin ASCIl is if you wish to performa MERGE of a
Basic program stored on disk with a program currently in nenory. The
programto be nerged in from disk must have been saved in ASCII, or the
merge will abort with an error

The SAVE command nmay be given either fromthe LBASIC Ready pronpt, or may
be incorporated as a command within a program If used within a program
the programw |l SAVE itself, after which normal execution will continue.

Exanpl e

Suppose you have keyed in a Basic program and wish to save this
programout to a disk file. The drive you wish to store this file on
is drive 1, and the name you wsh to assign to this file is
GOODPROE BAS. (One SAVE command that rmay be used to acconplish this
m ght ook like this:

SAVE" GOODPROY BAS: 1"

If you wish to save this programin ASCIlI, the followi ng comrand
coul d be used:

FS$=" GOCDPROG BAS": SAVE FS$, A
Note in the above exanple that the filespec was represented as a

string variable. Also note that the A paraneter nust appear as a
literal constant, and cannot be expressed as a string expression

SET ECF - Reset end of file nmarker to "shrink"” the size of a randomfile

The SET ECF commrand may be used to "shrink” the anount of space taken up
by a file, and thus free-up additional disk space. The syntax for the SET
EOF command i s:

SET EOFn

n represents the buffer nunber used to open the file in question, and can
be expressed as an integer constant or an integer expression.

The SET EOF command is used primarily in conjunction with randomfiles. In
some applications, a randomfile nmay contain unwanted records at the end
of the file. The SET EOF conmand will furnish you with a way to elimnate
these unwanted records. The function it perfornms is to reset the end of
file marker for the file in question to a value Iless than the current end
of file marker. This will cause all records whose record nunbers are
greater than the new end of file marker value to be ignored, and thus nmake
t hese records inaccessible. Also, the space taken up on the disk by these
"elimnated" records will be added to the free space avail able, and thus
may be reused.

To use the SET EOF conmand, you nust open the file in question as a random
file. It is highly reconmended that the record length used to open the
file be the same as the record | ength used for normal access to the file.

After the file has been opened, performa GET of the record you wish to be
the last record in the file. You may then use the SET EOF comand to reset
the end of file marker to the current record nunber, and thus elimnate
all unwanted records (by doing a GET, the current record nunber will be
changed to the value of the record which was retrieved).

Exanpl e

Suppose you have a random file named XTRA/DAT which currently
contains 100 records, and you wish to elimnate the last 50 records
of the file (records 5l-100). Assunme also that the file has been
opened in the random node, using buffer nunber 3. The follow ng
conmands may be used to acconplish this "file shrinkage"

CGET3, 50: SET EOF3

m

Be extrenely careful when wusing the SET ECF command. Once records
have been elimnated from a file using this comrmand, they m ght not
be recoverable!! It is beyond the scope of this manual to discuss
techniques used to recover lost information in a file. The best
prevention for such an occurrence is caution

TIME$ - Return the date and time as a string

The TIME$ command will retrieve the current date and tinme (as kept by the
real time clock) as a string. The syntax for the TIME$S command is:

TI VE$

The value returned fromthe TIME$ conmand can be used in a simlar manner
as the value returned fromthe MEM command. It may be used directly (as in
the statenment PRINT TIME$), or nay be assigned to a string variable (as in
A$=TIME$). The value returned by the TIME$ conmand will always be a 17
character string, and will be defined by the foll owi ng format:

m dd/ yy hh: nm ss

mm dd, and yy represent the nonth, day of the nonth, and year
respectively, as kept by the operating system The hh, nm and ss
represent the hours (00-23), mnutes (00-59) and seconds (00-59)
respectively, as retrieved fromthe real tinme clock when the TIME$S comand
was actually executed. The slashes ("/") and colons (":") wll always be
present in the string, and a space wll always separate the date
information fromthe tine information

USR - Execute a user witten machi ne | anguage subrouti ne.

The
nmac

USR conmmand will allow an LBASIC program to branch to a user witten
hi ne | anguage subroutine. The syntax for the USR comrand is:

vari abl e=USRn(i nt eger val ue)

variable must be a nuneric variable, and in nost cases should be of
integer type. If a wvalue is to be returned fromthe machi ne | anguage
subroutine, it nmay be contained in this variable when the machi ne | anguage
routine returns to LBASIC

nis the wuser routine nunber (~-9) used to identify the routine in
question (user routines are defined with the DEFUSR command). The routine
nunber nust be represented as a numeric constant.

integer value is a value which will be passed to the user machi ne | anguage
subroutine. It may be represented as a numeric expression or a numeric
constant, and nust be expressed as an integer val ue.

The USR command will allow you to junp to a machine | anguage subroutine
from within your Basic program The machine |anguage subroutine will
generally be resident in high nmenory, and the nenory used by the nodul e
must be protected, either wusing the MEMORY Library comrand, or by
speci fying the MEM paraneter when entering LBASIC.

Prior to issuing a USR call, the starting address of the specific machine
| anguage subroutine nmust have been defined using the DEFUSR command.

Once the USR call is performed, execution of your Basic programwill be
halted, and a junmp wll be done to the address specified in the
correspondi ng DEFUSR st atenent. Your nmachine | anguage subroutine will then
take over, until a return to Basic is perforned in the machine |anguage
nmodul e. Once this return to Basic has been encountered, your Basic program
will regain control

Exanple 1 — Initiating a USR call

Suppose you have | oaded and protected a nmachine |anguage nodule. In
addition, you have defined this nmachine |anguage nodule with the
foll ow ng commuand:

DEFUSR5=&HF400

To perform a junmp to this nmachine |anguage nodule, the follow ng
conmand nmay be given

XX%=USR5(1024)

Upon executing the above comrand, execution of the Basic programwil|
be halted, and the nmachine |anguage instruction at address X F400
will be executed. The value 1024 will be passed to the machine
| anguage routine. The machine |anguage routine will continue to be
executed, until a return to Basic is encountered. If any value is to
be returned fromthe subroutine, it will be contained in the integer
vari abl e XX% when Basi ¢ regai ns control

Exanpl e 2 - Passing values to and from nmachi ne | anguage subrouti nes

In the above exanple, the value 1024 was passed to the machine
| anguage subrouti ne. In order to utilize this value in the
subroutine, the first statement of the machine [|anguage routine
shoul d be the foll ow ng:

CALL OA7FH

Executing the above command as the first statenent in the machine
| anguage subroutine will cause the value 1024 to be placed in the HL
register, with Hcontaining the M5B, and L containing the LSB of the
val ue.

To return a value froma nmachine | anguage subroutine to Basic, you
should wuse the following command as the last statenment in your
subrouti ne:

JP OA9AH

After your machine |anguage nodule executes the above conmand,
control will return to Basic (the statenment followi ng the USR call),
and the variable used in the USR call will be assigned the val ue that
was in the HL register pair prior to the JP command. If no value is
to be returned from your machi ne | anguage nodul e, you may use a RET
command to return to Basic.

CMD'N' - LBASI C PROGRAM RENUMBERI NG

This LBASIC feature will renunber LBASIC programline nunbers as well as al
line references such as GOSUB and GOTQO The syntax is:

CMD'N | aaaa, bbbb, cccc, dddd”

! optional paraneter to skip the conplete scan
for errors before renunbering begins.

|
|
|
|
|
| aaaa |line nunber of the current programto start the
| renunbering from
|
|
|
|
|
|
|

bbbb new |ine nunber for |ine aaaa.
cccc increnent between |ine nunbers.

dddd the last |ine nunmber to be renunbered.

Bot h LBASI C/ CMD and LBASI ¢/ OV1 must be present on the disk, or a "Program Not
Found" error wll occur

You cannot have a line nunber zero (0) if renunbering an LBASIC program

This renunber feature wll allow you to renunber all or parts of the LBASIC
programcurrently in menory. The lines to be renunbered can be anywhere in
the program However, if the parameters you use wuld result in the

renunbered |ines being out of sequence, a BAD PARAMETERS error will occur

If you do not specify the exclamation point (!) character, a full scan for
errors will be done before the renunbering starts. If errors do exist, no
lines will be changed. It is usually much easier to fix the errors before the
i nes are renunbered!

If you do specify the !, any error found wll still abort the renunbering.
However, all internal |ine nunber references will have already been changed
up to the line that cause the error. Do not use the ! paraneter unless you
are absolutely sure that no errors exist.

The default values for the line and increment parameters are as foll ows:

aaaa =1
bbbb = 20
ccce = 20
dddd = 65529

VD' X" - LBASI C CROSS REFERENCE

This LBASIC feature will produce a cross reference of variables and Iine
nunbers for your LBASIC programcurrently in nenory. The syntax is:

CMVD' X devspec/fil espec paraneter,<title>"

devspec/filespec is the device or file the listing wll
be sent to. If not specified, it will go to the screen

par anet er specifies Variables or Lines as foll ows:

-V all Variabl es.
-L al | Line nunbers.
=nunber only the |ine nunber specified.

<title> an optional title to be printed on the top
of each page.

|

|

|

|

|

|

|

|

l _ _ o
| =variable only the variable specified.
|

|

|

|

|

|

|

|

|

Both LBASIC/CMD and LBASI G/ OV2 nust be present on a disk or a "Program Not
Found" error wll occur

You cannot have a line nunber zero (0) if you wish to use the cross reference
utility.

This cross reference feature will allow you to produce a list of the variable
and |ine nunber references of an LBASIC program This |list may be sent to any
device in the system such as the *DO (video screen), *PR (line printer),
etc. It may al so be sent directly to a specified disk file.

Paraneters are allowed to determ ne which variables or line nunbers will be
listed. |If no paranmeter is specified, all variables and I|ine nunbers will be
cross referenced.

If you wish atitle to be put on the top of every page in the list, it mnust
be specified between | ess-than/greater-than synbols in the comrand I|i ne.

LBASI C ERROR DI CTl1 ONARY

Incorporated in ROM Basic are various error nmessages and error codes. These
error codes are provided for the user so that certain types of errors may be
"trapped" for, and the execution of the Basic programin question will not be
interrupted. As pointed out in the ROM Basic nmanual, the user nay determ ne
the exact nature of an error by utilizing the ERR and ERL commands.

Because many new commands are included in LBASIC which are not a part of ROM
Basic, LBASIC will have in its error dictionary new error codes (disk error
codes), along with the error codes found in ROMBasic. The error dictionary
for LBASICis contained in the file LBASIC OV3. For this reason, LBASIC Ov3
nmust al ways be present on a disk in the systemwhen programmng in Basic.

This part of the manual will list the disk error codes and nmessages, and wil |
i nclude a brief description of each error. The wuser should realize that the
descriptions given for each error are not all inclusive. That is to say, the

exanpl e circunstances given for a particular error nmay not enconpass al
ci rcunst ances whi ch could generate the error in question

Bef ore we begin giving these disk error codes, a few general points should be
made. LBASIC s error dictionary is not as large as the error dictionary found
in LDOS. For this reason, several different types of disk related errors nmay
produce the sane LBASIC error nessage. To pinpoint the exact nature of a disk
related error, it may be beneficial to determne the LDOS interpretation of
an error. After a disk related error occurs, you nmay determ ne the associ ated
LDOS error nessage by performing a CVD'E'. This may be useful when, for
i nstance, you get the LBASIC error nessage "Disk [/O Error", as severa
different occurrences may cause this type of error. For nore information
refer to CVMD'E".

Al error codes given in this manual wll be the value returned by the ERR
conmand. In your ROM Basic manual, the error codes given may be derived by
the value of ERR/2 or ERR/2+1. If you wish your LBASIC programto conformto
t hese conventions, the error codes |listed here nust be adjusted accordingly.

Error 100 ----------- Field Overfl ow

The Field Overflow error indicates that the nunber of bytes fielded for a
random file exceeds the record length of the file (as specified in the
OPEN st at enent)

Error 102 ----------- Internal Error

An Internal Error wll occur when the error in question cannot be
interpreted. One way an Internal Error nmay be generated is to issue a
CVD'L" conmmand, and the file to be | oaded is not found.

Error 104 ----------- Bad Fil e Nunber

A Bad File Nunber error will occur when a file is opened using an illegal
buf fer nunber (a buffer nunber greater than the total nunmber of files
specified when entering LBASIC), or fielding a buffer which does not
correspond to an open randomfile.

Error 106 ----------- File Not Found

A File Not Found error indicates that the file being referenced does not
exist. This error may occur after an OPEN'I', OPEN'EC', OPEN'QO',
OPEN'RO', LCAD or RUN conmand has been issued.

Error 108 ----------- Bad Fil e Mode

A Bad File Mdde error indicates that a file is being accessed inproperly.
This may occur when, for instance, you try to access a file opened as a
random file in a sequential manner (i.e. issue an |INPUT# conmmand after
opening a file in the random node).

Error 110 ----------- File A ready Open

A File Already Open error will be generated when you try to OPEN a file
using a buffer that corresponds to an already open file. Note that no
error will be generated if the sane file is in an open state using two
different buffers at the same tine (This practice is NOI advi sed).

Error 114 ----------- Disk I /O Error

A D sk I/OFError will occur when an input fromor an output to a disk file
i s unsuccessful. A typical LDOS error message which is associated with the
Disk /O Error is a Parity Error.

Error 116 ----------- File Al ready Exists

A File Aready Exists error wll be generated when using an OPEN'xN'
conmand if the file already exists.

Error 122 ----------- Di sk Full
A Disk Full error will indicate that all of the free space on a disk has
been consunmed. In sone cases) the occurrence of a disk becoming full (i.e.
all of the disk space being consuned) may generate a Disk Wite Protected
error.

Error 124 ----------- I nput Past End

The Input Past End error applies only to sequential files opened for
input, and will occur when a read of the file is attenpted after all data
in the file has been input.

Error 126 ----------- Bad Record Nunber

A Bad Record Nunber error wll be issued when record nunber O (or sone

other illegal record nunber) is accessed in a randomfile.
Error 128 ----------- Bad File Nane
A Bad File Nane error will be generated when the file specified in an

OPEN, SAVE, LCAD, RUN or MERGE conmmand does not conform to the rules
governing valid LDCS fil especs.

Error 132 ----------- Direct Statenment in File

A Drect Statenent in File error wll be generated when a LQOADIis
performed of a file that is not an LBASIC program (usually when a LQAD of
a data file is attenpted). This type of error wll also be generated when
an LBASI C program whi ch was saved in ASCI1 is I|oaded, and a line in the
program exceeds 240 characters in |ength.

Error 134 ----------- Too Many Fil es
The Too Many Files error will occur when an attenpt is nmade to add anot her
extent to a file when all directory entries have been used. This type of
error will be very unconmon.

Error 136 ----------- Disk Wite Protected

A Dsk Wite Protected error wusually indicates that a wite has been
attenpted to a wite protected disk. Oher types of errors may also
generate a Disk Wite Protected error. |If the disk in question is not
wite protected, use CVMD'E' to determi ne the exact error.

Error 138 ----------- File Access Deni ed

A File Access Denied error nmay be generated when a password protected file
(either a data file or a programfile) is referenced using an incorrect
passwor d.

Error 140 ----------- Bl ocked File Error

A Blocked File Error will occur if you attenpt to OPEN a random file wth
an LRL of other than 256 after entering LBASIC and specifying the
par anmet er BLK=OFF.

Error 142 ----------- Syst em Command Abort ed

A System Command Aborted error will occur if an LDOS command called by the
CVD'command” function is manual |y abort ed.

Error 144 ----------- Protecti on Has C eared Menory

The Protection Has Ceared Menory error wll be generated if an attenpt is
made to illegally access an EXECute only programw thout wusing the proper
password. The program and variables will be cleared from nenory.

LI M TED WARRANTY

The LBASIC nanual is sold on an AS-IS basis. Every effort has been made to
assure the correctness of the information in the LBASIC manual . Gal actic
Software, Ltd. Assumes no liability whatsoever, with regard to the reliability
and/or fitness of this product for any application. Under no circunstances
will Galactic Software, Ltd. O its associates be held liable for the l|oss of

TI ME, DATA, PROGRAM5, or consequential damages incurred by the user as a result
of information in the LBASIC manual .

FOR USER SUPPCRT CALL 414 — 241-3080

First Edition LBASIC Model /111
Copyright 1981 by Gal actic Software, Ltd.
Al Rights Reserved

LDOS is a Trademark of Logi cal Systens, |ncorporated

	Top of document
	Table of contents
	Introduction
	Entering LBASIC
	General information
	LBASIC commands
	Hexadecimal representation
	Octal representation
	CLOSE
	CMD
	CVD
	CVI
	CVS
	DEF FN
	DEFUSR
	EOF
	FIELD
	GET
	INPUT #
	INSTR
	KILL
	LINEINPUT
	LINEINPUT#
	LOAD
	LOC
	LOF
	LSET
	MERGE
	MID$
	MKD$
	MKI$
	MKS$
	OPEN
	PRINT#
	PRINT# USING
	PUT
	RSET
	RUN
	SAVE
	SET EOF
	TIME$
	USR

	LBASIC program renumbering
	LBASIC cross reference
	LBASIC error dictionary
	Limited warranty

