[image: image1.jpg]MISOSYS ANNOUNCES!

> = s
A COMMAND PREPROCESSOR
- Standard 1/0 vedlrecllon (*KI, QDO *PR)

ar

- Hequires LD DO 51 & 100 bytes of high memory
Mall $40+32 261 M|sos)9s x 4848

60-2998 Aexandna Va. 22303

THE LDOS QUARTERLY April 1, 1983 Volume 2, Number 2

Table Of Contents

INTRODUCTION FROM LSI:

 GOODBYE, MEQUON! HELLO, MILWAUKEE! LSI moves Page 2

 VIEW FROM THE BOTTOM FLOOR .. Page 3

 RESULTS OF THE OCTOBER READER SURVEY Page 6

 NEW PRODUCT ANNOUNCEMENTS ... Page 7

 WORDSTAR FOR LDOS ... Page 11

FROM OUR USERS:

 CASE - For Model I without the Lower Case Mod Page 11

 SOLEFIX - For Model I users with the SOLE utility Page 14

 'CARD IT! - Handle files from BASIC Page 18

 TBA + NEWSCRIPT - Make TBA source with the NS editor Page 20

 EASY LSCRIPT - On line LSCRIPT Help with this KSM utility Page 22

 WRITE YOUR OWN HELP - Use those documented LDOS calls! Page 23

REGULAR USER COLUMNS:

 er ... Earle Robinson at large .. Page 26

 PARITY ODD - Tim Daneliuk ... Page 27

 'C' What's Happening - Earl Terwilliger Page 35

FROM THE LDOS SUPPORT STAFF:

 ITEMS OF GENERAL INTEREST ... Page 39

 Includes patches for the latest update, new BINHEX/BAS with checksums,

 and a patch to select disk space allocation

 LDOS: HOW IT WORKS - The REPAIR, CONV, and COPY23B Utilities Page 44

 Moving files from other DOS'es discussed

 RTC - by Roy Soltoff .. Page 46

 LDOS 6.0 - The RAM based LDOS structure

 THE JCL CORNER - by Chuck ... Page 49

SPECIAL ASSEMBLY LANGUAGE TUTORIAL:

 LES INFORMATION - by Les Mikesell ... Page 52

 Using Byte I/O in assembler

 DISK I/O IN ASSEMBLER - By Doug ('FED') Kennedy Page 55

 LET US ASSEMBLE... - Rich learns assembler Page 58

 Copyright (C) 1983 by Logical Systems, Inc.

 8970 N. 55th St, Milwaukee, WI 53223

 (414) 355-5454

All Mail, UPS and phone calls to Logical Systems should be addressed as follows:

LOGICAL SYSTEMS, INC.

8970 N 55th St.

P.O. Box 23956

Milwaukee, WI 53223

414/355-5454

NORMAL HOURS OF BUSINESS

Monday thru Friday

9:00am thru 5:00pm

Central Time Zone

*** HAVE YOU MOVED ***

If you have moved, be sure to notify us at least 30 days prior to the effective date

of your address change to insure that you do not miss any of the valuable issues of

the quarterly, or any other important notices which may be sent to you. Include you

Serial # with this information to expedite the changes to our files.

 LOGICAL SYSTEMS DEPARTMENTS

 * Contract Sales Department

 * Customer Service Department

 * LDOS Quarterly Department

 * Order Processing Department

 * Product Sales (Information) Department

 * Publication & Product Review Department

 * Subscription & Registration Department

Phone calls and/or correspondence to Logical Systems will get YOU the best results if

you address your questions, comments, or orders to the proper department:

Have your SERIAL NUMBER handy if you call. Also try to include it on your

correspondence to us. We may require this for any number of reasons to be able to

properly assist you.

V I E W F R O M T H E B O T T O M F L O O R by Bill Schroeder

Our move is over, and I hope we don't have to do it again for a long, long time. We

have moved the entire LSI operation to the building so proudly displayed on the front

of this issue of the Quarterly. The building is about 10,000 square feet and is located

on about 4 acres of land in Brown Deer, Wisconsin (a suburb just north of Milwaukee).

We have completely redone the interior of our building to meet our exact needs, and I

believe we have the best designed software facility anywhere, bar none. We have a MITEL

SX-100 Phone system (GENERIC/217) which is a state of the art computer controlled phone

system. For phones themselves, we use Panasonic KX-2202 feature phones. The building is

completely wired for multiple phone paths to all locations, plus multi-path coaxial

network system with complete cross connect and inter connect capability. If that is not

enough, the entire building is wired for RS-232 networking with all cabling, for all

systems, "HOME RUN" to a central control room.

This system will allow for all forseeable types of inter-office communications, much of

which is already in daily use. Our intent is to maintain the best office communications

system available. LSI hopes to be involved very deeply in the concepts and real world

implementations of office communications and data management. The office of the future

may be at LSI today.

We are very pleased with the new location and believe it should help us be more

efficient when serving our customers, thus keeping costs (and prices) under control.

LSI is so pleased with our new facility (and proud of it) that we want to show it off.

To this end we have decided to have an OPEN HOUSE on Saturday, June 25, 1983 from 12

noon until 5pm. Logical Systems will open its doors to the public. If you would like to

visit a state of the art software facility and one of the best software staffs in the

micro industry, please feel free to stop in. You will be very welcome.

At this OPEN HOUSE you will also have the pleasure of meeting some of the well known

persons you have heard so much about in the TRS-80 industry. We, of course, can not

promise which of our special guests will be able to attend, but here is a sampling of

the industry figures that have been sent personal invitations:

 Roy Soltoff MISOSYS

 Harv Pennington IJG, Publishing

 John Vanderlaughn AEROCOMP

 Bill Barden TRS-80 Author

 Irv Schmidt & Cameron Brown 80-US Magazine

 Roger Billings & Kirk Hobart LOBO Systems Inc.

 Don White TANDY Corp.

 Tim Mann LDOS "wizard"

 Ray Daly The Program Store

 Kim Watt & Dennis Brent Powersoft

 John Lancione & John Long Montezuma Micro

 Earl Robinson SoftERware

 Bob Grayson & "MOJO" Jones Micro Pro

 Jim Crocker Microsoft

 Charlie Butler The Alternate Source

 Don Stanfield TANDY Corp.

 Tim Daneliuk TRS-80 Author

 P.T. Wolf SAMS (software)

 Wayne Green & Jake Commander 80-Micro Magazine

 John Harding MOLIMERX (England)

 Earl Terwilliger "C" programming Guru

 Howard Gossman H & E Computronics

 Paul Grupp Adventure International

 Bill Driscol S.B.S.G.

 Bob Snapp Snappware Inc.

 Howard Wallowitz & Bill Prady Small Computer Co.

These are just a few of the well know names that will be invited to attend. We wish

they could all join us, but of course that will not be possible. Certainly some of

these individuals will be present for you to meet and talk to. It should be a good time

for all. Hope you can make it.

This newsletter arrived very late for two reasons. One, of course, was our move which

took place as this newsletter was being prepared. The other reason is the Radio Shack

Model-4 computer. As the official release date of the Model-4 was April 26th, we had to

wait until that date if we wanted to mention the Mod-4 in this issue.

I'm sure that by the time you receive this you will already have heard much about the

Mod-4, and what it is and is not. Here are the facts. The Mod-4 looks externally like a

Mod 3 that was painted white, and had a few extra keys added to the keyboard.

Internally the Mod-4 contains a Mod-3. That's right - all Mod-3 software should

function UNCHANGED. The real Mod-4 part of the machine is a Z-80 clocked at 4 mhz. with

64k ram (optionally 128k), 80 X 24 video display, three function keys, a "control" key

and "caps" key. It also has sound and reverse video capabilities.

All in all, the Mod-4 is a very nice Z-80 machine at a fair price. This same claim,

however, can be made by several other machines. The one thing that separates the Mod-4

from the crowd is the TRSDOS 6.0 operating system. This is the first appearance of an

LDDS 6.0 type operating system. It is without a doubt the most feature-laden OS ever

provided as the standard operating system with a micro-computer. Of course, I am more

than just a bit biased. Even discounting the fact that I would be unlikely to down play

an LSI developed product, I feel the 6.0 generation of operating systems from LSI will

set a new standard of excellence in the industry. We have every reason to believe that

the 6.0 product will become a very popular OS on several micros by the end of 1983.

Tandy's Technical Reference Manual, catalog # 26-2110, will contain information on the

technical aspects of TRSDOS 6.0 (which is LDOS 6.0). Therefore, for programmers wanting

information on the LDOS 6.0 system, this manual should do the trick. The exact price

and date of availability are not known for sure at this time, but it should be

available shortly.

The LDOS 6.0 product for the Mod-2/12 type hardware is already underway and should be

available yet this year. There will probably even be a couple of other machines flying

the LDOS 6.0 banner in that time frame.

LSI will of course be offering most of our products in versions to run on the 6.0 type

product. With regard to upgrades of 5.1 version products to 6.0 versions, there will be

none. No trade-ins, updates or upgrades of any kind will be offered. The reason for

this should be quite obvious, as all 5.1 versions of these products will function on

the Mod-4 (when it is run in the Mod-3 mode) under LDOS 5.1.3. As our users upgrade

their Mod-3 computers to Mod-4s they will still have the same fully functioning product

on that machine. Therefore LSI has decided that there is no reason to offer upgrades,

trade-ins or discounts of any sort.

So there are no misunderstandings it should be understood that LDOS 5.1 and the LSI 6.0

type systems represent TWO distinctly seperate product lines. Versions of products

written for 5.1 will not run on 6.0 and visa-versa. Please be careful when ordering and

be sure to specify the type of computer and the type of operating system for which the

product is intended.

You will be able to tell the difference between 5.1 and 6.0 versions of LSI products by

their titles. All 5.1 versions will have only a product name as their title or a

product name followed by "5.1". With this in mind, a 5.1 product may have a title like

"FED" or "FED/5.1" while the 6.0 versions of all products will have the 6.0 identifier

as in "FED/6.0". It should also be noted that at present, the market place for 6.0 type

products is much much smaller than the 5.1 type arena. It is for this reason that in

most cases, the 6.0 version of an LSI product will be priced slightly higher than that

of its 5.1 counterpart.

Let me now move on to some new products from LSI. The first of which is "FM" (File

Management system). This a super file and directory management package (not a catalog

program) that is fantastic in its abilities, but very simple to use and easy to

understand. "FM" even has its own built in help system and is very forgiving. I find it

to be like having an operating system within an operating system. "FM" is currently

available in a 5.1 version at just $39.00, as "FM/5.1". Very shortly the 6.0 version of

FM will be available for $49.00 as "FM/6.0". An article on the FM product appears in

this issue. Check it out.

We are now offering a new package called "LSI/HELP". In the past we had marketed a

product from MISOSYS called "HELP/QRC". This has now been replaced in our product line

by the official LSI "HELP SYSTEM". This is actually a product line in itself, and as a

product line offers much more than just HELP for LDOS. This product line is a complete

help file generation and access system. Pricing and functions are varied depending on

the portions or modules of the system that are ordered. To get all the details, read

the article on LSI/HELP in this issue.

DUPE is a high speed LDOS type diskette duplicator for use by persons who need to make

dozens or hundreds of perfect copies of LDOS type disks. This product came about mainly

out of our own needs here at LSI. We have purchased many duplication programs from

various authors at prices up to $500 and have not been satisfied with any of these.

They all lacked in reliablity, error handling, and Support. The LSI duplication system

works directly over the DOS and will produce totally verified exact duplicates at a

very rapid rate, and catch almost any fault. This product is intended for software

publishers and producers, and will not be available to individual users. The price is

$200 and is available in a Model-3 (5.1.3) or MAX-80 version only. It will duplicate

all LDOS type media 5.1 or 6.0. Much more info on this product can be found later in

this issue.

FED II for 5.1 and 6.0 is really something. The very popular FED product has been

enhanced with a built in Disassembler, a track/sector mode and much, much more. The

best part is the price has not changed. Instead we have dropped the price of the

original FED product to make this powerful maintenance tool available to many more

users. The Price for FED-II/5.1 will be $39.00 and FED-II/6.0 will be $49.00. The price

for the FED/5.1 is dropped to $19 effective 5/1/83. There is an article in this issue

detailing the features and enhancements to be found in the FED-II product.

TBA, our very well received preprocessing translator for the BASIC programmer, is also

available in a 6.0 version as TBA/6.0 for $79.00. This version of TBA has the same

specifications as the TBA/5.1 product.

WordStar is probably the most popular and most widely used word processing software in

the world. Of course, WordStar has, to this point, never been available for the TRS-80

Model-1 or 3 user except under CP/M. Well, the wait is over. MICROPRO, (the authors of

WordStar), and LSI have now put together the ultimate in word processing packages for

the TRS-80 Mod-1 and 3. WordStar is now available on smal-LDOS from both LSI and from

MICROPRO. The package is provided on the LSI smal-LDOS operating system and will run on

all LDOS 5.1.3 implementations, hard disk or floppy.

The WordStar/smal-LDDS package will carry an LSI suggested retail price of $395 as of

September 1, 1983. Until that time LSI will offer a special introductory price of just

$249!!! To take advantage of this special price, LSI must receive your order no later

than August 30th 1983. This special amounts to a discount of over 36% and should be

considered by anyone who is serious about word processing. Deliveries will begin in

July and will be processed for shipment in the order received. From word of mouth we

already have many prepaid orders. As a courtesy to those customers who have paid in

advance, all prepaid orders will be sent out prior to all credit card or COD orders. So

if you would like WordStar as soon as it is available, send LSI a check or money order

for $249.00. LSI will pay all shipping and handling charges on prepaid orders of

WordStar. We will also accept credit card and COD orders. Shipping and handling will be

added to this type of order. Also available will be the MailMerge option for WordStar,

as well as the WordMaster editor. Contact LSI for prices and availability.

LSI is now providing official support for the PERCOM DATA hard drive systems for the

TRS-80 running under LDOS. The system provided for use with Percom hard drives has

complete compatibility with software written for Radio Shack hard drive systems. All

software that will run on the Radio Shack hard drive LDOS system will run without

change on the PERCOM system. We at LSI are very pleased with the quality, reliability

and the small size (and small price). There are several types of hard drive packages

available from Percom with capacities starting at 5 meg. If you are in need of hard

drive storage for your Model-1,3,4 this may be the system for you. For more information

contact: PERCOM DATA CORP. 11220 Pagemill Rd., Dallas, Tx. 75243 (214) 340-7081

Our dealers and distributors have had some problems with customers expecting to

purchase "LSI Specials" through them. Please understand that LSI is also a retail sale

company and that we have our own promotions and specials. All PERMANENT price changes

will be reflected by our dealers, but probably not until their old stock has moved. Our

dealers are under no obligation to honor any "LSI Special". Specials and promotions by

LSI MUST be ordered DIRECTLY from LSI unless otherwise stated.

Now for the specials of the quarter. Our present Jan '83 catalog is still available in

limited supply, FREE for the asking. Our July '83 catalog will be available about mid-

June and will also be FREE for the asking.

As noted previously, I have permanently dropped the price of the very popular LSI

product FED (the LDOS "ZAP" type utility) to just $19.00. We would like a majority of

our users to have this product for use in maintaining their software in a simple, easy

to handle manner.

From now until JUNE 30, 1983 there will be special pricing on back issues of the LDOS

Quarterly. They are normally $5.00 each. Until JUNE 30th (or until we run out), back

issues will be just $2.50 each, plus shipping and handling. The July and October 1981

issues are already sold out, and some other issues are in very short supply. If you

want to fill out your set with the real thing, order soon to avoid disappointmerit. The

price will go back to $5.00 each for back issue effective July 1st 1983.

Our popular MAIL/FILE and INVENTORY packages have now been reduced to just $99.00

across the board. These packages are available in MOD-1, 2, and 3 versions (no Mod 2

inventory). Hundreds of these were sold at up to $259. Now you can obtain these for a

real bargain price. Write or call LSI for more details.

We should have plenty of our new catalog on hand for our OPEN HOUSE on June 25th, and

they will be given out there. LSI will also be giving away a FREE QUICK REFERENCE CARD

(a $5.95 value) to all LDOS owners that attend our open house, and bring with them

their LDOS MASTER disk. We will be updating all LDOS MASTER disks brought to the open

house at no charge. So come to the LSI open house on JUNE 25, 1983 from 12 noon to 5 PM

and receive a FREE UPDATE, a FREE LDOS 5.1 QUICK REFERENCE CARD, a FREE LSI JULY

CATALOG, and if all goes well, a FREE AUTOGRAPHED copy of the JULY '83 LDOS QUARTERLY.

READER SURVEY RESULTS from the Editors

In the October, 1982 Quarterly, we included a reader response card that listed most of

our major products, and had space at the bottom for suggestions concerning future

Quarterly content. Believe it or not, your suggestions actually played a major part in

determining the content of the last newsletter, and those (including this one) that

will follow! In order of popularity were the following requests:

 Reviews and use of application programs - 24%

 Basic assembly language programming - 21%

 Languages other than BASIC or assembler - 17%

 Explanations of LDOS utilities - 10.5%

 JCL uses - 9.5%

 Communications and R5232 - 9%

 Interfacing to strange hardware - 9%

Several of these catagories are normally covered by the regular columns in each

newsletter. Starting with the last issue, the LDOS: HOW IT WORKS column gives an in-

depth explanation of a particular LDOS command or utility. This issue has three

articles written by the LSI staff dealing with basic assembly language programming.

The one thing that we on the Quarterly staff do not have time to do is compile complete

evaluations and reviews of application programs that will run with LDOS. We get many

requests and calls asking "what data base manager/accounting package/etc. will run with

LDOS." If you are currently running programs of this type with LDOS, why not write up a

review for the Quarterly? Many other readers would appreciate it, and because we pay

for published articles, you could even recover part of the purchase price.

We plan on including another reader survey card in this year's October issue, so if you

want to see something in the Quarterly, write down your ideas and wait for the next

round.

NEW PRODUCT ANNOUNCEMENTS

FM - File Manager Utility

FM stands for File Manager. It is a utility program designed to facilitate specific

mass manipulation of files. Four modes are supported: Display, Kill, Move, and Remove.

The first three modes correspond respectively with the LDOS library commands DIR,

PURGE, and BACKUP by Class. The Remove mode is a combination of BACKUP and PURGE. This

combination is, in effect, a transfer to a destination disk because files moved to it

are purged from the source.

FM's utility comes from its ability to involve more than the usual number of drives

associated with the normal operations. This means that comparison opportunities that

can simplify maintenance of sets of diskettes are possible. For example, it is now

possible to get a directory of the files on drive based on whether or not they exist on

a second drive! The other modes can then be used to transfer those files between

drives.

FM lets you specify a string of ASCII characters, inserts any matching filename into

the string, and then writes the string to a file. This file can then be used as a JCL

file to do things such as multiple renames, feed an editor assembler, etc.

The partspec (partial file specification) abilities of FM include three types of

wildcards as well as the capability to specify a separate filename and extension for

comparison purposes.

FM parameters include standard features such as modification of visibility status, file

dating, file allocation information, sorted list switch, printer switch, and a query

switch.

New parameters concern recent dates (today, yesterday etc.), unmodified files, a mod

flag clearing utility and more.

Several special parameters deal with large volume drives to facilitate moving files

from these larger drives to smaller volume diskettes.

FM increases the speed of file transfer by approximately 50% over the normal BACKUP,

yet still includes a full read verification of transferred data. Also, error retry

handling is built in. No more aborting a backup on a Parity error!

The parameters of FM can be considered to be grouped into classes by function. Certain

parameters deal with the attributes of files, some with dates, and others with size. To

allow FM to be controlled by a JCL file, the JCL and ABORT parameters are included. One

group of parameters deals with the type of display you will get from FM; sorted or

unsorted, on the video or the printer, and prompt or go non-stop.

All of this gives the user much more specific, simplfied control of file listing,

killing, and moving than was previously possible. In one command line, it is possible

to copy files from a source to a destination which only exist on yet a third drive; or

purge them or simply view or print them. This kind of machination would have taken at

least two printed directories and at least one backup assuming unprecedented luck. FM

can do it in ONE LINE!

FM allows hundreds of combinations and, in general, can save the adroit user thousands

of keystrokes and many hundreds of minutes.

FM for the LDOS 5.1 operating system is available from LSI for $39.$0. A 6.0 version

will be available later this year.

LSI HELP PACKAGE

There is now a new release of HELP available. The HELP system consists of three

different packages. All packages are available as a 5.1.3 version, with a 6.0 version

ready shortly.

Package number one is called LDOS HELP. This includes help information on LDOS library

and utility commands, and help on all LBASIC statements and functions. To access the

information, it is only necessary to type something like : "HELP LDOS SYSTEM". This

will display to the video or printer all information concerning the LDOS library

command SYSTEM, which includes the syntax line and a brief description of the

parameters available.

The video is restored to the calling screen to allow help to be invoked from within

programs. In addition, the help module can reside in high memory to further enhance its

usefulness in programs which can not ordinarily or readily access a system command. The

resident module can address up to fifteen HELP data files simultaneously.

All HELP data files end in an extension of "/HLP". If the user is unaware of what help

is on line, typing the word "HELP" at LDOS Ready causes all available files to be

displayed, and an option is given to utilize one of them.

The high memory module has a disable parameter which in most cases can release the

memory used when the HELP module is no longer required.

LDOS HELP includes two data files LDOS/HLP and LBASIC/HLP as well as the two HELP

modules HELP/CMD (from LDOS) and HELPRES/CMD (in memory). This package also comes with

a 5.1.3 Quick Reference Card.

The second package is called TECHNICAL HELP. This includes information in four data

files which cover all Z-80 mnemonics as well as MOST of the technical section of the

LDOS manual! Imagine programming within EDAS and never having to look up anything

pertaining to system entry points, machine specific calls, SVC numbers, or the

registers employed on a call to the system. The Z-80 section includes mnemonic

description, object code, flag settings, timing and format.

TECHNICAL HELP includes both HELP modules as well as the data files Z80A/HLP, Z80M/HLP,

TECH1/HLP and TECH2/HLP. The TECH help files are not turorials, but merely reference

the information in the LDOS manual technical section.

The last module is called HELP GENERATOR. This allows the user to create HELP data

files by processing a user generated ASCII text file into a HELP usable file. Help may

even be generated for user applications programs and then, through use of the

HELPRES/CMD, employed from within almost any program. Simply type the desired text into

a word processor or a text editor, save it in ASCII, and run the HELPGEN/CMD. The rules

regarding proper text format are simple to follow.

The HELP GENERATOR includes HELPGEN/CMD as well as the two display modules, HELPRES/CMD

and HELP/CMD.

All three HELP packages come in either a 5.1.3 or a 6.0 version. (Note that LDOS HELP

6.0 does NOT contain a quick reference card.) HELP 6.0 will be available in early June.

The HELP 5.1 prices are $19 for LDOS Help, $29 for TECH Help, and $49 for the HELPGEN

package. HELP 6.0 prices will be $29 for LDOS Help, $39 for TECH Help, and $59 for the

HELPGEN package.

DUPE/CMD

This program is designed for software distributors, not for the general public, and as

a result is priced as such. It is the same program as used by LSI to duplicate all of

our products.

DUPE is a disk duplicating program for use with the LDOS 5.1 operating system. It is a

single-pass duplicator, formatting and writing each track on all destination drives

before stepping in to the next track. Since it is a one pass duplicator, it is

significantly faster than the normal Format and Backup duplication method. There are

several error catching features that are built in, including checksumming both the

source and destination disks to detect hardware or memory related errors, as well as

the normal CRC checks. A bi-directional verify is also available, and tests each track

while stepping the head out as well as when stepping in.

Once DUPE is loaded, it does not require a system disk in drive 0, and can copy the

source disk to more than one destination drive on each pass. Since this is a byte for

byte duplication, this means that Model I disks can be made on a Model III, and vice

versa (assuming double density capability on the Mod I).

Disks which contain errors are identified at the end of each pass, and a running total

of the good disks created is displayed. The program can be used to duplicate any LDOS

type floppy disk in any LDOS system with two or more drives.

DUPE is available only from LSI, priced at $200.00.

FEDII - The LDOS File/Disk Editor

FEDII is an all purpose File and Disk editor, and is an enhancement of the original FED

file editor. The display consists of a 256 byte sector with a hex display and ASCII

display area representing each byte of the sector. Separate cursors in both display

areas provide for easy identification of the current modification byte, and full cursor

positioning makes it possible to quickly position to any byte in the record.

Additional display information in both modes includes the filename/drive number, record

number (track and record number in the drive mode), relative byte number in the sector

over which the cursor is positioned, and also the decimal and binary representations of

that byte.

If you are in the file mode and the file is a Command File (machine language program),

additional information will also be displayed regarding the byte over which the cursor

is positioned. If the cursor is positioned over a load block header, information

regarding the load block will be displayed. If the cursor is positioned within program

code, the load address of that byte will be displayed, along with a disassembly of the

instruction.

If you are in the drive mode, the filename associated with the current sector will be

displayed (if applicable).

Any byte within the current sector can be modified by entering either hex digits or by

directly typing in ASCII characters. Changes to the current sector will not be made

until a Save Sector command is issued. Additionally, the current sector or entire file

(or disk) can be sent to the printer, and the contents of the current sector from the

present cursor position to the end of the sector can be nulled out (all bytes being set

to X'00').

Several other means of positioning to specific records are supported. Commands may be

issued to position to the beginning record, ending record, or a specific record in

either the file or disk mode. Additionally, the next record and previous record may be

accessed.

In the file mode, positioning commands are also available to jump to the address

specified in an instruction, position to the next instruction, position to the previous

load block and position to the next load block. These commands are all relative to the

current cursor position.

FEDII also provides search capabilities in either the file or disk mode. Hex and ASCII

strings may be searched for, and the cursor will be positioned to the search string if

it is found. ASCII text strings may be searched for, and the case of the string (upper

or lower) is ignored in the search. In the file mode, if the file is a command file, a

load address may be specified. If found, the cursor will be positioned to the byte

which loads at the specified address.

FEDII is available for just $39.00 for Version 5.1, and $49.00 for Version 6.0

TBA-60 (The BASIC Answer)

TBA-60 is a BASIC text processing utility. It is designed to allow the BASIC programmer

to construct code in a structured manner. "Source code" is created with a word

processor or text editor which allows the user to exploit the powerful editing and

movement features characteristic to those types of software. Source code can also be

created by means of a BASIC interpreter. TBA-60 is then used to process this source

code into ordinary interpretive BASIC code.

TBA-60 utilizes labels in lieu of line numbers. Branching in a program is accomplished

by means of a descriptive label as opposed to an arbitrary line number. This means that

blocks of code (subroutines) can be referenced by names which reflect their function,

such as @SORT.NAMES. Labels may be up to fourteen characters in length. The use of

labels allows for relocatable BASIC subroutines without the problems associated with

renumbering.

TBA-60 allows the use of longer variable names. Variable names may be up to fourteen

significant characters. This allows the use of descriptive names to represent

variables, which augments program readability in the case where the program has not

been examined for some period of time.

TBA-60 introduces the concept of "Conditional Translation". The feature allows the co-

existence of "machine dependent" code within the same source file. Irrelevant sections

of code may be ignored during processing.

TBA-60 also allows the use of Local and Global variables. Local variables are those

variables which retain their value only in a given subroutine. This means that variable

tracking and confilct problems are minimized.

TBA-60 is available for $79.00, and requires the 6.0 operating system.

WordStar 3.0 - A word processor

WordStar is probably the most widely used word processing program in the world. Until

now, using it meant running under CP/M or some other operating system. Being one of the

first word processors means that WordStar is relatively bug free, which is a real boon

when large documents are at stake! Even though the final release version was not

available when it came time to start this Quarterly, the initial beta test copy proved

so reliable that what you are reading was done with WordStar. The file is 200K+, so you

have an idea of one of the nicest features of WordStar.

This issue was formatted with a MAX-80 and a hard disk. The printing was done on our

Daisy Wheel II from Radio Shack. At the time, the incremental print driver was not

completed, so the normal space justification was used, along with our old boldface and

underline filters.

Some of WordStar's text handling features are horizontal scrolling, block moves and

insertions of columnar data (!), text insertion anywhere in the text from files on disk

(!), the ability to save a block of text to a file of your choice, and automatic file

backup when opening a document. Screen oriented features are constant display of page

number, line number, and column position, adjustable levels of online help (a real plus

when learning the system), and the ability to justify the text ON THE SCREEN!. Some

special print features are the ability to define user print codes, the ability to

redefine headers and footers whenever desired, and the ability to set conditional page

breaks (i.e., if there are less than so many lines left on the page, start a new page

here).

From an LDOS standpoint, WordStar lets you use the LDOS KI/DVR and keyboard filters, as

well as the standard printer driver and any filters. The spooler will also function.

There are just too many features to mention all of them here. As WordStar is so

popular, you may be able to get a look at a manual in a local non-RS, computer store. I

have used (or attempted to use) many word processors in putting together the Quarterly.

My personal choice is WordStar, both for the features and the reliability it offers.

The MailMerge option from Micropro is also available for the TRS80 and will be

available from LSI.

CASE/CMD

By Rick Toblas

Here's a little monitor routine for those of us without the lower case modification on

the Model I. I had this thing about hitting the shift zero '0' when keying the '*' or

the ')'. To combat the problem of not knowing what case I was in , I decided to write

this program.

The program runs on a Model I under control of the task processor. The routine monitors

the KFLAG$ bit 5 (caps lock bit) and prints on the video screen (the up arrow if in

upper case or the down arrow if in lower case).

--

The program allows for 2 parameters:

 DIS -- disable routine

 POS -- screen position for arrows (abbrevations P for POS)

No parameters will enable the routine and use position 62.If only P05 (or P) is used

the routine will enable and use the position given.

--

The routine relocates itself in high memory, but the program does not reuse the same

area if re-activated. The program does check to see if the routine is already active

and the program will not re-activate but returns to DOS.

00100 TITLE <CASE/CMD.UP/LOW MONITOR>

00110 ;**

00120 ;** **

00130 ;** RICK TOBIAS 07/82 VER 01.01 **

00140 ;** THE COMPUTER SERVICES **

00150 ;** CASE/CMD **

00160 ;** ----------------------- **

00170 ;** THIS PROGRAM IS IN TWO PHASES **

00180 ;** PHASE I WILL RELOCATE PHASE II TO HIGH **

00190 ;** MEMORY. PHASE II WILL ATTACH TO THE **

00200 ;** INTERRUPT LEVEL SLOT 2 AND MONITOR **

00210 ;** THE VALUE OF KFLAG$ BIT 5. IF ONE **

00220 ;** AN UP ARROW WILL BE DISPLAYED OTHERWISE **

00230 ;** THE DOWN ARROW WILL BE DISPLAYED. **

00240 ;** PARAMETERS CAN BE PASSED TO THE PROGRAM **

00250 ;** ALLOWABLE PARAMETERS ARE (DIS) (P=NNNN) **

00260 ;** (POS=NNNN) **

00270 ;** NO PARAMETERS WILL ENABLE ROUTINE AND USE **

00280 ;** POSITION 62 OF THE VIDEO TO PRINT ARROWS **

00290 ;** DIS - WILL DISABLE ROUTINE **

00300 ;** P OR POS WILL USE THAT SCREEN POSITION **

00310 ;** TO DISPLAY THE ARROWS **

00320 ;** NO TEST IS MADE FOR POSITIONS **

00330 ;** POSITIONS MUST BE 0 THRU 1023 **

00340 ;** --------------------- **

00350 ;**

00360 ;

00370 ;

00380 CR EQU 0DH ;RETURN CHAR

00390 @VDCLS EQU 01C9H ;CLEAR SCREEN

00400 @DOS EQU 402DH ;RETURN TO DOS

00410 HIGH$ EQU 4049H ;HIGHEST USEABLE ADDRESS

00420 @VDLINE EQU 4467H ;DISPLAY STRING

00430 @PARAM EQU 4476H ;SCAN OPTIONAL PARMS

00440 KFLAG$ EQU 4423H ;KEYBOARD FLAG

00450 USTOR$ EQU 4DFEH ;USER STORAGE AREA

00460 @ADTSK EQU 4410H

00470 @RMTSK EQU 4413H

00480 @RPTSK EQU 4416H

00490 TCBOFF EQU 45B5H ;ADDR IF TCB OFF

00500 @TCB2 EQU 4504H ;ADDR OF TCB SLOT 2

00510 ;

00520 ORG 5200H

00530 CASE EQU $

00540 PUSH HL ;SAVE $INBUFF

00550 CALL @VDCLS ;CLEAR SCREEN

00560 LD HL,MSG1 ;FIRST MESSAGE

00570 CALL @VDLINE ;DISPLAY IT

00580 POP HL

00590 LD DE,PRMTBL$;GET ADDR OF PRAMETERS

00600 CALL @PARAM ;DETERMINE PARAMETERS

00610 JP NZ,PARMERR ;BAD PARAMETERS

00620 ;

00630 PPARM LD BC,3EH ;INIT TO P05 62

00640 LD HL,3C0H ;1ST SCREEN P05

00650 ADD HL,BC

00660 LD (A1+1),HL ;LOAD SCREEN POS

00670 LD (A2+1),HL

00680 DPARM LD BC,0 ;INIT AT OFF

00690 LD A,B

00700 OR C

00710 JR Z,EPARM

00720 RMVTSK LD A,2

00730 CALL @RMTSK

00740 LD HL,MSG4 ;DISABLE MESSAGE

00750 CALL @VDLINE ;DISPLAY IT

00760 JP @DOS

00770 ;

00780 ;

00790 ;

00800 EPARM EQU $

00810 LD HL,(@TCB2) ;TCB SLOT 2

00820 LD BC,TCBOFF ;TCB SLOT INACTIVE

00830 SBC HL,BC ;IF ZERO THEN EQUAL

00840 JR NZ,ACTIVE

00850 LD HL,(HIGH$) ;REDUCE HIGH$ BY THE

00860 LD BC,LAST-START ;LENGTH OF ROUTINE

00870 XOR A ;CLEAR THE CARRY FLAG

00880 SBC HL,BC ;CALC NEW HIGH$

00890 LD (HIGH$),HL ;ROUTINE NEW PROTECTED

00900 INC HL ;POINT HL AT NEW START

00910 LD (USTOR$),HL ;SAVE ENTRY FOR TCB

00920 EX DE,HL ;XFER NEW START TO DE

00930 LD HL,START ;LOAD ADDRESS OF ROUTINE

00940 LDIR ;MOVE ROUTINE TO TOP

00950 JP DOIT

00960 ACTIVE LD HL,MSG5

00970 CALL @VDLINE

00980 JP @DOS ;RETURN TO DOS

00990 DOIT LD DE,USTOR$;LOAD TCB ADDR

01000 LD A,2 ;POINT TO SLOT 2

01010 CALL @ADTSK ;ADD TASK

01020 LD HL,MSG3 ;MESSAGE 2

01030 CALL @VDLINE ;DISPLAY IT

01040 JP @DOS ;RETURN TO DOS

01050 ;

01060 ;

01070 ;

01080 PARMERR EQU $

01090 LD HL,MSG2

01100 CALL @VDLINE

01110 JP @DOS

01120 ;

01130 MSG1 DM 'UPPER/LOWER CASE MONITOR V1.0 7/82',CR

01140 MSG2 DM 'BAD PARAMETES...................',CR

01150 MSG3 DM 'U/L CASE MONITOR NOW ACTIVE.....',CR

01160 MSG4 DM 'U/L MONITOR DISABLED...........',CR

01170 MSG5 DM 'U/L ALREADY ACTIVE.............',CR

01180 ;

01190 PRMTBL$ DB 'DIS '

01200 DW DPARM+1

01210 DB 'POS '

01220 DW PPARM+1

01230 DB 'P '

01240 DW PPARM+1

01250 NOP ;END TABLE

01260 ;

01270 ;

01280 ;**

01290 ;** **

01300 ;** ACTUAL MONITOR ROUTINE **

01310 ;** **

01320 ;**

01330 ;

01340 ;

01350 START EQU $

01360 ;

01370 PUSH DE

01380 PUSH HL

01390 PUSH AF

01400 LD HL,KFLAG$;KEYBOARD FLAG

01410 BIT 5,(HL) ;TEST BIT 5

01420 JR Z,$+11 ;IF 1 THEN LOWER CASE

01430 LD A,5BH ;LOAD UP ARROW TO REG A

01440 A1 LD (3C00H),A ;DISPLAY IT

01450 POP AF

01460 POP HL

01470 POP DE

01480 RET

01490 LOWER LD A,5CH ;LOAD DOWN ARROW TO REG A

01500 A2 LD (3C00H),A ;DISPLAY IT

01510 POP AF

01520 POP HL

01530 POP DE

01540 RET ;RETURN TO SYSTEM

01550 ;

01560 ;

01570 LAST EQU $;LABEL FOR CALC LENGHT

01580 END CASE

This is the hex code for the CASE monitor, and can be made into a /CMD file using the

BINHEX program found later in this issue.

05 06 43 41 53 45 20 20 01 02 00 52 E5 CD C9 01 21 7C 52 CD 67 44 E1 11 23 53 CD 76 44

C2 73 52 01 3E 00 21 00 3C 09 22 49 53 22 52 53 01 00 00 78 B1 28 0E 3E 02 CD 13 44 21

E3 52 CD 67 44 C3 2D 40 2A 04 45 01 B5 45 ED 42 20 19 2A 49 40 01 1C 00 AF ED 42 22 49

40 23 22 FE 4D EB 21 3C 53 ED B0 C3 62 52 21 03 53 CD 67 44 C3 2D 40 11 FE 4D 3E 02 CD

10 44 21 C2 52 CD 67 44 C3 2D 40 21 A1 52 CD 67 44 C3 2D 40 55 50 50 45 52 2F 4C 4F 57

45 52 20 43 41 53 45 20 4D 4F 4E 49 54 4F 52 20 20 20 56 31 2E 30 20 37 2F 38 32 0D 42

41 44 20 50 41 52 41 4D 45 54 45 53 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E

2E 2E 0D 55 2F 4C 20 43 41 53 45 20 4D 4F 4E 49 54 4F 52 20 4E 4F 57 20 41 43 54 49 56

45 2E 2E 2E 2E 2E 0D 55 2F 4C 20 4D 4F 4E 49 54 4F 52 20 44 49 53 41 42 4C 45 44 2E 2E

2E 2E 2E 2E 2E 2E 2E 01 5A 00 53 2E 2E 0D 55 2F 4C 20 41 4C 52 45 41 44 59 20 41 43 54

49 56 45 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 0D 44 49 53 20 20 20 22 52 50 4F 53 20

20 20 15 52 50 20 20 20 20 20 15 52 00 D5 E5 F5 21 23 44 CB 6E 28 09 3E 5B 32 00 3C F1

E1 D1 C9 3E 5C 32 00 3C F1 E1 D1 C9 02 02 00 52

*1D

SOLEFIX -- Fix that GAT error!

Erik Ruf

202 Kenilworth Dr.

Akron, Ohio 44313

(216) 867-7575

 As supplied, an LDOS double-density diskette will not boot on a Model I. This is

because the ROM is expecting a single-density boot sector, and is thus unable to read

the double-density boot routine on the disk. Overcoming this difficulty is simple --

you use the SOLE utility from Misosys. SOLE reformats cylinder 0 in single-density and

places its own boot routine on this track. SOLE also alters the diskette's directory by

setting the allocation bits for all 3 granules of cylinder 0 so that the system won't

attempt to write over the boot routines. Unfortunately, SOLE fails to allocate one of

these these granules to a file; this creates a granule allocation table (or GAT) error.

 Normally, this poses no problem for the user; as long as the granule is allocated,

LDOS doesn't care what it is allocated to. However, some utilities (such as Super-

Utility Plus) will detect this error, and will not proceed until it is fixed. Super-

Utility Plus graciously fixes this error for you (whether you like it or not!), and

thus allows the system to write on cylinder 0, granule 2; your boot routine will be

ruined when this sector is overwritten.

 The solution? Why not allocate all of cylinder 0 to BOOT/SYS? All one needs to

do is to change one of the extent bytes in BOOT/SYS's directory entry. This will

allocate the granules to BOOT/SYS. It's also a good idea to give BOOT/SYS the CREATE

attribute so that the system won't be able to de-allocate this extra granule.

 The quickest way to do this is with FED or any other disk file or sector editor.

Use FED to load relative sector 2 of DIR/SYS. Then, change byte 01 from a 00 to an 80

(this will give BOOT/SYS the CREATE attribute) and change byte 17 from a 01 to a 02

(this will allocate all of cylinder 0 to BOOT/SYS). Write the buffer to the disk, and

you're done. (Note: all data given in HEX).

 This seems simple enough, but it is rather cumbersome when you have to patch about

50 disks. My first thought was to use a direct PATCH on DIR/SYS, so I tried it. BIG

MISTAKE!! This led to an instant system crash; I spent a half-hour resurrecting the

disk. Moral: never, NEVER use the PATCH utility on DIR/SYS! If you don't understand

why, read the January 1983 LDOS Quarterly. (Oh, if mine had only arrived 3 days

earlier...)

 In order to take care of the problem once and for all, I wrote SOLEFIX/CMD (listed

below as SOLEFIX/ASM), a small machine language routine that does the patching for me.

SOLEFIX is entered by typing SOLEFIX (DRIVE=d) from the LDOS Ready level, where d is

the drive # containing the diskette to be fixed. (As SOLEFIX uses information from the

drive's Drive Code Table (DCT), be sure to log in the diskette by using DEVICE or

LOG/CMD). After parsing the command line to get the drive #, SOLEFIX checks to make

sure that the drive in question is a 5" floppy drive that contains a double-density

diskette that has a single-density cylinder 0 (i.e. it has been SOLEd). If the drive

and diskette pass the test, SOLEFIX uses the LDOS I/O primitives to load the offending

directory sector, fix it, and write it back to the disk. SIMPLE! The actual read-fix-

write is a very small part of the program; most of the code just checks for errors.

 Hopefully, this routine will end the problems associated with SOLE's inherent GAT

error. Happy disk-fixing!

00100 TITLE <SOLEFIX/ASM>

00110 ;

00120 ; Program to fix the GAT error introduced by

00130 ; SOLE by allocating the entire boot track to

00140 ; BOOT/SYS and giving BOOT/SYS the CREATE

00150 ; attribute so that none of its granules will

00160 ; be deallocated. The program also checks to

00170 ; ensure that the disk in question is a 5"

00180 ; double-density floppy disk with a single

00190 ; density track 0. As this program uses the

00200 ; DCT, be sure to log in the drive before using

00210 ; SOLEFIX.

00220 ;

00230 ; syntax: SOLEFIX (DRIVEd) <ENTER>

00240 ;

00250 *LIST OFF ;suppress list of EQUates

00260 *GET EQUATE1/EQU ;get system EQUates

00270 *LIST ON ;list back on

00280 ;

00290 ORG 6000H

00300 START EQU $;it all begins here

00310 PUSH HL ;save command line

00320 LD HL,BANNER ;addr for title

00330 CALL @DSPLY ;display title

00340 POP HL ;get command line

00350 LD DE,PARMS ;parm table address

00360 CALL @PARAM ;parse it, LDOS!

00370 JR NZ,PARMERR ;parse had troubles

00380 REPLACE EQU $

00390 LD HL,0FFFFH ;replaced by parse

00400 LD A,L ;get drive #

00410 CP 8 ;check it

00420 JR NC,BADNUM ;bad or missing drive #

00430 LD C,A ;drive # in C

00440 CALL GETDCT ;drive info addr in IY

00450 LD A,(IY) ;get 1st DCT byte

00460 CP 0C9H ;check enable/disable

00470 JR Z,DIS ;disabled drive!

00480 LD A,(IY+3) ;check drive type byte

00490 BIT 7,A ;check for software WP

00500 JR NZ,WPERR ;write-protected disk!

00510 BIT 5,A ;5" or 8"?

00520 JR NZ,ERR8IN ;8" drive!

00530 BIT 3,A ;floppy or winchester?

00540 JR NZ,WINCH ;winchester drive!

00550 CALL @CKDRV ;check drive

00560 JR C,WPERR ;write-protected!

00570 JR NZ,NREADY ;drive not ready!

00580 LD HL,MSG1 ;"checking drive"

00590 CALL @DSPLY ;display it

00600 LD HL,SBUFF$;use system sector buffer

00610 LD DE,0 ;cyl=0, sect=0

00620 CALL RDSECT ;read it

00630 JR NZ,DOSERR ;DOS error

00640 BIT 6,(IY+3) ;check density

00650 JR NZ,DDEN0 ;boot track must be SDEN!

00660 INC D ;cyl=1, sect=0

00670 CALL RDSECT ;read it

00680 JR NZ,DOSERR ;DOS error

00690 BIT 6,(IY+3) ;density

00700 JR Z,SDEN1 ;disk not DDEN!

00710 PUSH HL ;save buffer addr

00720 LD HL,MSG2 ;"WRITING" message

00730 CALL @DSPLY ;display it

00740 POP HL ;get buffer

00750 LD B,0 ;DEC for BOOT/SYS

00760 CALL DIRRD ;get directory sector

00770 JR NZ,DOSERR ;DOS error

00780 INC HL ;point to attrib byte

00790 SET 7,(HL) ;CREATE attribute

00800 LD DE,22 ;offset to alloc byte

00810 ADD HL,DE ;point to alloc byte

00820 LD (HL),02 ;allocate 3 grans (cyl 0)

00830 CALL DIRWR ;write it back!

00840 JR NZ,DOSERR ;DOS error

00850 JP @EXIT ;Done! -- back to LDOS

00860 PARMERR LD HL,ERR1 ;parameter error

00870 JR ERRPRT ;display it!

00880 BADNUM LD HL,ERR2 ;bad or missing drive #

00890 JR ERRPRT

00900 DIS LD HL,ERR3 ;disabled drive

00910 JR ERRPRT

00920 WPERR LD HL,ERR4 ;write-protected

00930 JR ERRPRT

00940 ERR8IN LD HL,ERR5 ;not S" drive

00950 JR ERRPRT

00960 WINCH LD HL,ERR6 ;not floppy drive

00970 JR ERRPRT

00980 NREADY LD HL,ERR7 ;drive not ready

00990 JR ERRPRT

01000 DDEN0 LD HL,ERR8 ;DDEN cylinder 0

01010 JR ERRPRT

01020 SDENl LD HL,ERR9 ;SDEN cylinder 1

01030 ERRPRT EQU $

01040 CALL @DSPLY ;display error msg

01050 JP @ABORT ;back to LDOS

01060 DOSERR EQU $

01070 AND 63 ;lop off bits 6+7

01080 JP @ERROR ;display & jump to LDOS

01090 PARMS EQU $;parameter table

01100 DEFM 'DRIVE ' ;parameter word

01110 DEFW REPLACE+1 ;storage location

01120 NOP ;end of table

01130 ERR1 DEFM 'Parameter Error',13

01140 ERR2 DEFM 'Bad or missing drive #',13

01150 ERR3 DEFM 'Disabled Drive',13

01160 ERR4 DEFM 'Write-Protected disk',13

01170 ERR5 DEFM 'Not a 5" drive!',13

01180 ERR6 DEFM 'Not a floppy drive!',13

01190 ERR7 DEFM 'Drive not Ready',13

01200 ERR8 DEFM 'Track 0 must be SINGLE-DENSITY!',13

01210 ERR9 DEFM 'Diskette must be DOUBLE-DENSITY!',13

01220 BANNER DEFM 28,31,'SOLEFIX - SOLE Boot Fix Routine '

01220 DEFM '(Erik Ruf, l/27/83)',10,10,13

01230 MSGl DEFM 'Checking Diskette Format',13

01240 MSG2 DEFM 'Patching Diskette Directory',13

01250 END 6000H

This is the HEX listing for the SOLEFIX program:

05 06 53 4F 4C 45 46 49 01 02 00 60 E5 21 7B 61 CD 67 44 E1 11 B2 60 CD 76 44 20 6C 21

FF FF 7D FE 08 30 69 4F CD 8F 47 FD 7E 00 FE C9 28 63 FD 7E 03 CB 7F 20 61 CB 6F 20 62

CB 5F 20 63 CD B8 44 38 54 20 61 21 B3 61 CD 67 44 21 00 42 11 00 00 CD 77 47 20 63 FD

CB 03 76 20 4F 14 CD 77 47 20 57 FD CB 03 76 28 48 E5 21 CC 61 CD 67 44 E1 06 00 CD 10

4B 20 42 23 CB FE 11 16 00 19 36 02 CD 1F 4B 20 34 C3 2D 40 21 BB 60 18 26 21 CB 60 18

21 21 E2 60 18 1C 21 F1 60 18 17 21 06 61 18 12 21 16 61 18 0D 21 2A 61 18 08 21 3A 61

18 03 21 5A 61 CD 67 44 C3 30 40 E6 3F C3 09 44 44 52 49 56 45 20 11 60 00 50 61 72 61

6D 65 74 65 72 20 45 72 72 6F 72 0D 42 61 64 20 6F 72 20 6D 69 73 73 69 6E 67 20 64 72

69 76 65 20 23 0D 44 69 73 61 62 6C 65 64 20 44 72 69 76 65 0D 57 72 69 74 65 2D 50 72

6F 74 65 63 74 65 64 01 EA 00 61 20 64 69 73 6B 0D 4E 6F 74 20 61 20 35 22 20 64 72 69

76 65 21 0D 4E 6F 74 20 61 20 66 6C 6F 70 70 79 20 64 72 69 76 65 21 0D 44 72 69 76 65

20 6E 6F 74 20 52 65 61 64 79 0D 54 72 61 63 6B 20 30 20 6D 75 73 74 20 62 65 20 53 49

4E 47 4C 45 2D 44 45 4E 53 49 54 59 21 0D 44 69 73 6B 65 74 74 65 20 6D 75 73 74 20 62

65 20 44 4F 55 42 4C 45 2D 44 45 4E 53 49 54 59 21 0D 1C 1F 53 4F 4C 45 46 49 58 20 2D

20 53 4F 4C 45 20 42 6F 6F 74 20 46 69 78 20 52 6F 75 74 69 6E 65 20 20 28 45 72 69 6B

20 52 75 66 2C 20 6C 2F 32 37 2F 38 33 29 0A 0A 0D 43 68 65 63 6B 69 6E 67 20 44 69 73

6B 65 74 74 65 20 46 6F 72 6D 61 74 0D 50 61 74 63 68 69 6E 67 20 44 69 73 6B 65 74 74

65 20 44 69 72 65 63 74 6F 72 79 0D 02 02 00 60

*B6

Changing LBASIC defaults

This JCL file was submitted by Eric Ruf. Its basic purpose is to patch LBASIC (Version

5.1.3) to change the default for the EXT, BLK, and FILE parameters. To use this JCL,

type in a DO command specifying the EXT, BLK, and F parameters as desired. DOing the

file with no parameters will display the built in help message.

//IF -EXT&-BLK&-FIL

//ELSE if a parm was entered ...

//IF EXT

//ASSIGN EXT=FF

//ELSE

//ASSIGN EXT=00

//END

//IF BLK

//ASSIGN BLK=FF

//ELSE

//ASSIGN BLK=00

//END

//ASSIGN FSPEC=LBASIC/CMD.EZTO

PATCH #FSPEC# (D02,9E=#EXT# #EXT#:D11,25=#BLK# #BLK#)

//IF FIL

PATCH #FSPEC# (D02,A5=#FIL#)

//END

//EXIT

//END (End the Help IF)

LDOS "CARD" UTILITY

by Canadian-Micro

119A Bathurst St.

London, ONT N6B 1P1

The purpose of this program is:

 1. to execute multiple commands with a minimum of keystrokes.

 2. to perform file copies based on mod flags.

 3. to re-attrib files for easier directory management.

 4. to rename files/extensions.

 5. to delete files.

Most will find it particularly useful on large directories such as on double-sided 40

or 80 track drives.

To execute the program type: LBASIC RUN"CARD/BAS" <ENTER>.

- Display will prompt for (source or target) D r i v e # ?

 Type drive # <0-7>.

- You will then be prompted for directory parameters. For visible entries type:

 V <ENTER> , etc.

- Files will then be displayed one at a time for you to enter commands.

 eg. ==> SYS6/SYS:0 (isP) <?>

- First is the filename with extension and drive #.

- Inside the () brackets is the file attributes:

 (s)=SYSTEM (v)=VISIBLE (i)=INVISIBLE (P)=PROTECTED

- Inside the < > brackets is where command is entered.

- Menu:

 <C>opy - will prompt for destination drive # (0-7). Destination file will have a mod

 flag unless original file is password protected, which causes "cloning".

 <A>ttrib - will prompt <V/I/X> and change attributes:

 V makes file visible;

 I makes file invisible;

 X removes all password protection.

 <R>ename - will prompt for new name, parameters are the same as "LDOS" rename.

 <D>elete - will ask OK?

 And then kill file, protected or not!

 <Q> key - will list full drive directory. To return to point of exit press any key.

 <-> key - after instruction is completed will backup to previous file for further

 commands.

 <SPACE BAR> - will advance to next file. (Nothing done.)

 <ENTER> - if first key pressed after 'C','A','R' or 'D' file will be re-listed.

 (Nothing done.)

 <@> key - when pressed for "D r i v e #" exits program. Pressed at any other time

 will return to start.

- Commands are executed as they are entered.

1 CLEAR3000:GOSUB49

2 ONERRORGOTO0:B$=" D r i v e # ? ":F=-1:GOSUB48:IFI$="@"THENCLS:CMD"S"

3 IFI$=""THEN2ELSEQ$=":"+I$:Z$="DIR/SYS.EZTO"+Q$

4 B$=" Parameters <S/I/V>":F=1:GOSUB48:IFI$="@"THEN2

S IFI$=""THEN2ELSEY=ASC(I$): IFY<97THENY=Y+32

6 IFY=115ORY=118ORY=l05THENA$=CHR$(Y)ELSE4

7 OPEN"RO",1,Z$,32:ONERRORGOTO54:FIELD1,1ASM$,4ASL$,8ASN$,3ASE$,2ASJ$:R=LOF(1):E

=17:FORX=ETOR

8 GET1,X:Y=ASC(M$):IFYAND128THEN34

9 IFYAND64THENG$="s":IFN$="BOOT "ORN$="DIR "THEN34ELSE12

10 IFYANDl6THENG$="v"ELSE34

11 IFYAND8THENG$="i"

12 IFG$<>A$THEN34ELSEP$=CHR$(150)+"B":IFJ$=P$THENP$=""ELSEP$="P"

13 Z$=N$:GOSUB53:Z$=Z$+"/"+E$:GOSUB53:GOSUB52

14 B$=" "+Z$+Q$+" ("+G$+P$+")":F=1:GOSUB48

15 ON(INSTR(" CcAaRrDdQq-@".I$)+1)GOTO14,33,19,19,22,22,26,26,28,28,17,17,16,35

16 GET1,R:X=E:GOTO8

17 CLS:C$="DIR "+Q$:IFA$="v"THENCMD C$ELSEC$=C$+" ("+A$:CMD C$

18 C$=INKEY$:IFC$=""THEN18ELSECLS:GOSUB49:GOSUB52:GOTO14

19 C$="Copy ":PRINT@581,C$;:PRINT@610,CHR$(30);"to drive # ? <";:F=-

1:GOSUB36:IFI$="@"THEN35

20 IFI$=""THEN14ELSEIFI$=RIGHT$(Q$,1)THEN19ELSEK$=" :"+I$

21 IFP$="P"THENK$=K$+" (C=Y)":GOTO30ELSEK$=K$+" (C=N)" :GOTO30

22 C$="Attrib ":PRINT@579,C$;:PRINT@610,CHR$(30);"<V/I/X> ?

<";:F=1:GOSUB36:K$="":IFI$="@"THEN35

23 IFI$=""THEN14ELSEY=ASC(I$): IFY>96THENY=Y-32

24 IFY=86ORY=73THENK$=K$+" ("+CHR$(Y)+")":GOTO30

25 IFY=88THENK$=" (A=,U=,P=AL)":GOTO30ELSE22

26 C$="Rename ":PRINT@579,C$;:PRINT@610,CHR$(30);" to <";:F=12:GOSUB36:IFI$="@"THEN35

27 IFI$=""THEN14ELSEK$=" to "+I$:GOTO30

28 C$="Kill ":PRINT@579,"Delete ";:PRINT@610,CHR$(30);" OK ?

<";:F=1:K$="":GOSUB36:IFI$="@"THEN35

29 IFI$<>"Y"ORI$<>"y"THEN14

30 C$=C$+Z$:IFP$="P"THENC$=C$+".EZTO"

31 C$=C$+Q$+K$:PRINT@576,CHR$(30);TAB(10)"==> ";C$;

32 PRINT@785,CHR$(31);". . . E x e c u t i n g . . .":CMD C$

33 E=X

34 NEXTX

35 CLOSE1:GOSUB50:GOTO2

36 I$="":A=0:D=ABS(F):PRINTSTRING$(D,32);">";STRING$(D+1,24);CHR$(14);

37 W$=INKEY$:IFW$=""THEN37ELSEIFW$="@"THENI$="":D=1:GOTO47

38 IFD=ATHEN41ELSEIFF<0THEN40

39 IFW$<" "THEN41ELSEIFW$<CHR$(128)THEN47ELSE37

40 IFW$=CHR$(13)THEN46ELSEIFW$=>"0"ANDW$=<"7"THEN47ELSE 37

41 IFW$<>CHR$(8)THEN43ELSEIFA=0THEN37

42 PRINTCHR$(24);:I$=LEFT$(I$,(LEN(I$)-1)):A=A-1:POKE16418,32:GOTO37

43 IFW$<>CHR$(24)THEN45

44 IFA=0THEN37ELSEPRINTSTRING$(A,24);:GOTO36

45 IFW$<>CHR$(13)THEN37

46 PRINTCHR$(15);:RETURN

47 PRINTW$;:I$=I$+W$:A=A+1:IFD=1THEN46ELSE37

48 PRINT@576,CHR$(30);TAB(10)"==>";B$;:PRINT@617,"<";:GOSUB36:RETURN

49 CLS:X$=STRING$(34,58):PRINT@78,X$;:PRINT@142,": LDOS 'C A R D' UTILITY

:";:PRINT@206,": by Canadian-Micro :";:PRINT@270,X$;:PRINT@389,"<C>opy

<A>ttrib <R>ename <D>elete";

50 PRINT@521,CHR$(31);STRING$(45,124);:PRINT@649,STRING$(45,124);

51 PRINT@983,"<@> key to EXIT";:RETURN

52 PRINT@785,CHR$(31);" <SPACE BAR> for next file";:PRINT@853,"<-> for previous

file":PRINT@918,"<Q> for directory";:GOTO51

53 IFRIGHT$(Z$,1)=" "THENZ$=LEFT$(Z$,(LEN(Z$)-1)):GOTO53ELSERETURN

54 PRINT@576,CHR$(30);TAB(10)"***** Input Error *****";:FORXX=1TO1500:NEXT:RESUMEl6

NewScript and The BASIC Answer

J.L. Latham l409 Evergreen Circle Midwest City, OK 73110

I'm sure you all are aware by now that NewScript from ProSoft is my own personal

favorite word processor. There just isn't any job that I have asked it to do that it

couldn't. Once again NewScript has come through like the true champ that it is.

For payment for my last journalistic adventure into The LDOS Quarterly, I received a

copy of The BASIC Answer (TBA). A sweet package indeed. Without going into all the

details, I'll just say that TBA provides you with a method of creating more readable

source code for your BASIC programs. It pushes you toward a more structured programming

method, and allows you to use either the standard BASIC interpreter OR a word processor

to create your source code. Using a word processor for source code is the interesting

part, and we will look at it here with NewScript in mind.

The TBA psuedo-compiler (well, I'm not sure what else to call something that takes

ASCII text and converts it into interpreter executable code) insists that the source

file be in "pure" ASCII format. The only characters with an ASCII value less than 32

allowed are those for the carriage return and line feed. A word processor such as

Scripsit must be told specifically to save the text in that format, and the same goes

for the BASIC interpreter. NewScript does not. NewScript saves all of its information

in ASCII format without special prompting. Not having to remember any special commands

is a real boon to such a a forgetful individual such as myself. Anytime I don't have to

remember something it means I don't have to worry about forgetting it, and that's the

way the whole world should work. After all, isn't that what computing is all about -

letting a machine do the drudge work for you?

I began looking into the possibility of using NewScript with TBA almost immediately. I

was a little surprised when I "compiled" a couple of their sample programs and ended up

with a "direct statement in file" error on them. I then realized that they probably

expected explicit carriage returns in the source code, so I used NewScript to edit the

files, simply going to the end of certain lines and hitting the <ENTER> key. Once I had

done this everything worked fine. As the TBA manual states, the source code must have a

carriage return (read that as <ENTER> key) at least every 240 characters or the dreaded

"direct statement in file" error will occur. That is an admonishment even to Scripsit

users. Remember that one rule and almost nothing can go wrong.

Once I had determined that source code for TBA could be created effortlessly with

NewScript, I then decided that calling up NewScript, editing and saving the text then

going to the LDOS Command level and executing "TBA<ENTER>" to "compile" the code was a

bit tedious, especially if I had an error in the code and needed to do some more

editing. I found that it is entirely possible to edit your code with the NewScript

EDITor, get a printout with SCRIPT, and "compile" the code to check for errors without

ever leaving the protection of NewScript.

ProSoft has conveniently left slot #7 of their main menu unassigned to any specific

task. In version 7.0, if you choose option #7 the program simply ignores your request.

It then waits for another input from the keyboard by looping to line 70 of their menu

driver program, which is written in BASIC. I have previously used slot 7 to perform

such things as running other BASIC programs, and to access the G.E.A.P. Dot Writer

program. I figured it wouldn't be too hard to get the program to access TBA for me

either, and I was correct. TBA/CMD can be accessed via a CMD"TBA" statement from BASIC

just as a CMD"DIR" could be.

Some minor program changes to the NewScript program NSINIT have to be done in order to

accomplish this, but they are simple and are worth the time it takes.

In the October LDOS Quarterly I told you how to create a version of NewScript on a

double density LDOS disk, and it turns out that those instructions also work with hard

disks. So, if you haven't moved your NewScript files to a double density disk, get out

the October issue and do it, and then proceed with the following modifications.

Boot your LDOS NewScript disk and when you are shown the main menu hit the <BREAK> key.

You now have the NSINIT program in memory right in front of you. List the program from

lines 100 on. My version ends with line 122. Add the following lines of code (my line

numbers asssume that the program ends with line 122):

123 ONERRORGOTO125:CMD"TBA"

124 GOTO 126

125 RESUME 126

126 ONERRORGOTO0:GOSUB50:GOTO26

Now check out line 50. In my version of NSINIT it looks like this:

50 PRINT" Press <ENTER> TO CONTINUE...";

Scroll back up from that line until you find the line that ends with ON X GOTO

58,58,44,58,58,68,40,54,58. In my listing it was line 42. This is the line that

controls the program flow based on your choice from the menu. The number we are

interested in is the seventh one in the list. In my version it sends the program flow

to line 40, as I indicated above. Change that seventh entry (the 40) to 123 and you

will get everything headed the way it needs to be.

Believe it or not, one more change and we are ready. If your line numbers have been

running with mine then look at line 32 of your program and you will see part of the the

menu lising. One part of that line will be "7) (unassigned)". Change the "(unassigned)"

to "PROCESS TBA SOURCE" and you are done with the required changes. Now SAVE"NSINIT/:0"

to keep your modified version of NSINIT. Hope you enjoy the added convenience of being

able to write and edit TBA source code, "compile" it, re-edit it, and even to write the

documentation for it without ever leaving the confines of NewScript.

As a passing freebee I'll let those who want to add speed up board support to NewScript

have that before I say goodbye. The changes are simple. At the end of line 1 of NSINIT

add the OUT command that activates your speed up board. Look at the line mentioned

above (line 42) that has the ON X GOTO statement in it and check the eighth entry in

the line. In my listing that value is 54. Line 54 simply contains a CLS statement. Add

the command that returns your clock to the normal CPU speed to the end of that line.

Now when you return to the LDOS Command mode you will be back to the normal CPU speed.

This last change is of interest mostly to people who have boards (such as the Holmes

which I use) that have several speed up (and slow down) commands other than a simple

OUT254,0 0UT254,1 set of commands. You don't have to cut out the speed with the Holmes

board, but some others may require it for proper disk operation.

EASY LSCRIPT

by James E. Bruckart

Like many TRS-80 computer owners, my first word processor was Radio Shack's cassette-

based Scripsit. I used Lazy Writer with my first disk drive, but returned to Scripsit,

albeit the LDOS patched version, to take full advantage of the LDOS and LScript.

Along the wandering path I developed an affection for a "logical" - mnemonic type -

single character input for each word processing function. For example, type "I" to

insert, "L" to load, and "H" for help. To obtain these functions and more, I use

LSCRIPT with a special Key-stroke multiply filter "LSCRIPT/KSM" (listing 1). Most

Scripsit functions are duplicated by depressing the <CLEAR> key and alphabetic key

related to its name. LSCRIPT/KSM replaces Scripsit commands by passing the current

LSCRIPT command value (i.e.- <CLEAR-1> for insert or hex character B1) when <CLEAR-I>

is depressed. Likewise, "Load" is initiated by combining <SHIFT-ENTER>, <L>, and <Space

Bar> (Spec Cmd, L, and space - Hex 1D, 4C, and 20).

LSCRIPT/KSM is created by typing the BUILD LSCRIPT/KSM (HEX) command and typing the

response for each letter as noted in Listing 2. The letters "C", "F", "M", and "O" are

unused and may be designated for "user-defined" functions. The Help feature (<CLEAR-H>)

saves the current text in a file (TEXT/LCR) and displays the help file - HELP/LCR.

After finishing with Help, <CLEAR-G> returns your text to the Scripsit buffer for

processing.

To start word processing, I execute DO LSCRIPT. This JCL installs LSCRIPT/KSM, starts

LSCRIPT, and allows an optional spelling check when LSCRIPT is finished. "1" selects

spelling check, but any other key will finish JCL and return to LDOS Ready.

In summary, LSCRIPT/KSM lets you remove the stickers from your keyboard, and provides

Help with a single keystroke. Most occasional users will find these mnemonic commands

easier to remember, and each command - key combination more logical.

LSCRIPT/KSM Filter Data

A=>1B0D I=>B10D O=>0D U=>B00D

B=>B50D J=>AD0D P=>1D50200D V=>B60D

C=>0D K=>B20D Q=>1D51313B0D W=>B40D

D=>B30D L=>1D4C200D R=>B80D X=>B70D

E=>1D454E440D M=>0D S=>1D0D Y=>B90D

F=>0D N=>BA0D T=>1D53200D Z=>1A0D

G=>1D4C20544558542F4C43523B0D

H=>1D5320544558542F4C43523B201D4C2048454C502F4C43523B0D

This is the actual text file, HELP/LCR. Its contents are what will be shown on the

screen when the <CLEAR><H> keys are pressed.

 LSCRIPT Commands

A Top of Text H Help O V Window

B Block I Insert P Print W Word

C J Page Q Dir X Exchange

D Delete K Line R Repeat Y <--

E Exit L Load S Spec Cmd Z End

F M T Save BREAK Abort

G Get Text N New Para U -->

Comment: >* comment (must follow text boundary)

Document Info: Spec Cmd ? C ENTER - line # of cursor

 L length of text

 M available memory

Formatting text: >fc1, fc2, ...

 PL = page length (1 to 90)

 LM = left margin (0 to 131)

 RM = right margin (1 to 132)

 TM = top margin (1 to 89)

 BM = bottom margin (2 to 90)

 LS = line spacing (1 to 90)

 PF = paragraph format (1 to 90)

 J = justify text (Y or N)

 C = center text (Y or N)

 FR = print flush right (Y or N)

 VC = center vertically (Y or N)

 P = print text (Y or N)

 WS = supress window (Y or N)

 F = begin footer on page (1 to 65535)

 H = begin header on page (1 to 65535)

 PN = start page numbering (1 to 65535)

Global: Replace Text String - Spec Cmd R > text > new text

 Delete Text String - Spec Cmd D > text <ENTER>

 Find Text String - Spec Cmd F > text <ENTER>

Headers & Footers: Spec Char B, H, or F (Head or Foot), O, E, or S (odd, even, or all

pages), ENTER (terminate line), type text, ENTER, Block, End

Hyphenation: Block - Block End, at end of text - Spec Cmd H ENTER type number ENTER, to

remove - Spec Cmd H ENTER

Label Blocks: Block label Block End

Page Numbers: Block P # Block End

Printer: Control characters - >$ value, value,

 Pause comment - ># comment string

Tab: Spec Cmd T = t1, t2, t3, ...

Video Info: Spec Cmd ? W - Video line width

 Spec Cmd W = (1 to 132) sets video width

Press <CLEAR> <G> to return to text

@PARAM , @DSPLY , @EXIT and INBUF$

Easy to use LDOS Routines for Everyone

by David Vinzant

 LDOS provides users with several very useful and rather easy to use machine

language subroutines. I had tried machine language several times but became frustrated

with the amount of code required to do anything of real significance and restricted my

programming to BASIC, which is slow but straight forward and easy to debug. After

getting LDOS, learning the commands and the differences between LDOS and TRSDOS, I

decided to find out what was in the Technical Information Section of the LDOS Manual.

What I found was a description of all sorts of routines and memory locations that LDOS

used and how to go about using them myself. The instructions looked so easy I decided

to dig out my editor-assembler. I had always been intrigued with the speed of machine

code, but had never taken the time to master it.

Several weeks earlier I had been talking with another new LDOS user and we were

comparing notes on likes and dislikes. He had commented that he missed the HELP command

that was available in TRSDOS 2.7DD. Having that comment in the back of my mind I

quickly took notice of three routines and one memory location in the Tech. Section of

the LDOS manual. These were the @PARAM, @DSPLY, @EXIT and INBUF$. With these I set out

to write a HELP Command Utility. I decided on a format of HELP (command). I use the

@PARAM routine to parse or look through my input line which was sitting in INBUF$. I

then built a table of the available commands for @PARAM to compare with my input line.

This I would call TABLE1. The @PARAM routine requires the table to be in a special

format. The command field must be 6 characters long, followed by a 2 byte field which

tells @PARAM where to put the parameters into. @PARAM uses a 00H as an indicator of the

end of the table. @PARAM can capture parameters in several ways. First if the parameter

is entered in the format of PARAM=number, @PARAM will capture the number and put it

into a specific place in memory. If the format is PARAM=yes/no/on/off, it will save 00H

or FFH, 00H for off/no and FFH for on/yes. If the format is PARAM=string, it will save

the location of the first byte of the string. If the format is PARAM with no equal

sign, it will save FFH for that parameter. So I needed to set up a table for @PARAM to

put its results in. This I called TABLE3.

The next routine I needed to look at was @DSPLY. With this routine, you simply load HL

with the location of the first byte of the message and the when @DSPLY is called it

will display memory starting at that location until it finds a 13 or 0DH as a

terminator. So I needed a table of the locations of the first byte of each message.

This I would call TABLE2. The program flows as follows:

1.Load the TABLE1 location into DE and the buffer location into HL.

2.Call @PARAM.

3.Clear INBUF$ so if next input has no parameter it is properly parsed.

4.Check for errors in the parameter entered (parameter which is not in the table).

5.Loop through TABLE1 and look for end of table (no parameter entered).

6.Loop through TABLE3 looking for an 0FFH (the parameter entered) (stored in TAB).

7.Load the location of the message into HL from TABLE2.

8.Call @DSPLY.

9.Call @EXIT (return to LDOS).

 This was a great lesson in machine language programming for a beginner. First, I

left all the complicated programming to LDOS. Second, I ended up with a program that

was really useful. My final HELP Command Utility has all sorts of features including

the following:

1. By entering HELP with no command the utility lists all the commands which HELP

 accesses.

2. The display for each command lists the command as it appears in the LDOS manual with

 all available parameters listed.

3. The display also lists the page number in the LDOS Manual where further details on

 the command can be found.

 Listed here is a program for the beginner to use to get LDOS to print a line of

data based on the command HELP (command) where command is either TEST1, TEST2, TEST3,

no parameter or invalid parameter. This program can be assembled as any name but the

name should be 4 characters in length. This is because I have offset the value of

INBUF$ by 6 to get @PARAM to look at the first letter of the command entered (4 for

HELP, 1 for space and 1 for parenthesis). It is also important to note that it is the

<enter> , character 13 or 0DH, that @PARAM uses to terminate its look at the command

line. In order to avoid a repeat of the last entry when a command is entered without a

parameter, a 13 must be placed in the buffer. This was the only part of the LDOS

documentation that I found missing. It didn't say where in the buffer to point to for

@PARAM or what the @PARAM terminator was. It is also worth noting that @PARAM regards

upper and lower case as the same, so it will find a match if your input is in lower

case and your table is in upper case or the other way around. To get this program to

run on a MODEL III you need only change @PARAM and INBUF$ to the values given in the

manual for Model III remembering to offset INBUF$ by 6.

00100 @PARAM EQU 4476H ;define LDOS entry

00110 INBUF$ EQU 431DH ;points and loc

00160 @DSPLY EQU 4467H ;for Model I

00170 @EXIT EQU 402DH

00190 ORG 5200H

00200 ENTRY LD DE,TABLE1 ;table to look at

00210 LD HL,INBUF$;buffer to look at

00230 CALL @PARAM ;parse command

00240 LD A,13 ;0DH to clear INBUF$

00250 LD (INBUF$),A ;clear INBUF$

00410 JP NZ,ERROR ;check for bad parm

00420 LD HL,TABLE3 ;indicator table

00430 LD (TAB),HL ;into TAB

00440 LD DE,TABLE2 ;message table bc

00450 LD HL,TABLE1 ;parse table bc

00460 LOOP LD BC,8 ;length of command

00470 LD A,00H ;check for end

00480 CP (HL) ;of parse table

00490 JP Z,NOPAR ;no param entered

00500 ADD HL,BC ;inc parse table

00510 PUSH HL ;save table bc

00520 LD HL,(TAB) ;load md table

00530 LD A,0FFH ;check for hit

00540 CP (HL) ;in @PARAM

00550 JP Z,MSG ;print message

00560 LD BC,2 ;length of word

00570 ADD HL,BC ;inc indicator bc

00580 LD (TAB),HL ;save indicator bc

00630 EX DE,HL ;exch locations

00650 ADD HL,BC ;inc message bc

00660 EX DE,HL ;re-exch locations

00680 POP HL ;recover parse bc

00690 JP LOOP ;check next command

00840 ERROR LD HL,ERMSG ;loc of error msg

00850 JP MSG2 ;message displayer

00860 ERMSG DEFM 'Invalid parameter'

00870 DEFB 13

00880 NOPAR LD HL,NOPARM ;loc of no parm msg

00890 JP MSG2 ;message displayer

00900 NOPARM DEFM 'No parameter'

00910 DEFB 13

01690 MSG LD HL,TAB ;load storage bc

01700 EX DE,HL ;into DE

01710 LD BC,2 ;length of bc

01720 LDIR ;put msg bc in TAB

01730 LD HL,(TAB) ;loc of msg

01780 MSG2 CALL @DSPLY ;display message

01790 CALL @EXIT ;return to LDOS

01800 TABLEl DEFM 'TEST1 ' ;parse table

01810 DEFW TABLE3

01820 DEFM 'TEST2 '

01830 DEFW TABLE3+2

01840 DEFM 'TEST3 '

01850 DEFW TABLE3+4

02860 DEFW 0

02861 TABLE2 DEFW WRD1 ;table of msg bc

02862 DEFW WRD2

02863 DEFW WRD3

02865 TABLE3 DEFM 'XXXXXX' ;indicator table

02870 WRD1 DEFM 'Response to TEST1 input'

02880 DEFB 13

02950 WRD2 DEFM 'Response to TEST2 input'

02960 DEFB 13

02990 WRD3 DEFM 'Response to TEST3 input'

03000 DEFB 13

05780 TAB DEFW 0 ;storage loc

05790 END ENTRY

.......... er

by Earle Robinson

The late appearance of the Quarterly fitted in well with my timing for this column.

Plagued with landslides, and having moved houses and office, I really understand how

much all those back issues of Byte & 80 Micro weigh(!) and appreciated the slimmer

dimensions of 80 US. Speaking of 80 US, after having despaired as it seemed to float

first from being an excellent technical oriented publication, then becoming a too

elementary one, I am happy to note that the editors now have found a formula which

should please most readers. They are also scrupulously avoiding the sort of editorials

which have hurt 80 Micro's image, and reduced its readership and advertising.

 I am writing this on the RS Model 100, a superb example of what a hand-held

computer can and should be. It has an 8 line, 40 characters per line display. It also

contains a built-in modem and text editor (which I am using) and which takes some

getting use to! However, I was somewhat chagrined to learn that the acoustic cable, a

necessity if you wish to use the built-in modem where there are no convenient phone

jacks, which means 99 per cent of hotels and everywhere outside the U.S., will not be

available until late Summer. Caveat emptor!

 I shall upload it all into my trusty old Scripsit, not the newer Super one, but

the old version 1.0 augmented by extensive patching under LDOS to have become and

remain a very good text editor and even an adequate word processor. Please excuse a

little immodesty there since I was one of the major contributors to the patches.

 It is a funny thing, that though we all have at one time or another bitterly

condemned the quality of the Shack's software, Scripsit has retained its value. And,

the new SuperSCRIPSIT is a very useful program, too. It is a far more advanced word-

processing program, of course. Yet, it is a darned easy one to get to know and use. It

only has two major defects. First, the very lousy code takes up much more space than it

should and runs very slowly on any system other than one equipped with a hard disk.

Secondly, it still ain't all that reliable. For reliability, you can't beat WordStar.

 WordStar is written in 8080 code and was the first fully functional word-

processing program after the path was blazed by Electric Pencil. Alas, this program has

yet to be released for the Model I or III. There are beta copies out, but MicroPro, the

publisher, is uncertain if there is a viable means of marketing Wordstar to the TRS80

community. The program is very difficult to learn, I might add. There are some 180

different commands, almost none of which are logical to the keyboard. I use it for long

documents because I can't yet rely on SuperSCRIPSIT, alas.

 For those of you who do acquire SuperSCRIPSIT, may I advise you to be careful what

printer you buy to run with it. If you do buy some little used brand of printer you may

be reduced to having to write your own driver for it. Several times a week I receive

enquiries if my firm offers a driver for such and such a printer, and I am obliged to

say there is not enough demand to justify the time and expense in writing such a

driver. Either buy a RS printer or get one which is used widely such as the ProWriter,

Nec 1023a, the Epson MX series, or the C. ITOH F10 in the area of daisy wheels.

 Speaking of printers, I had the opportunity of trying the 'son' of Mx80 the other

day, called the FX80. It was a big disappointment. There is only one character set,

though it can be used in 10, 12 pitch and proportional spacing, as well as in the so-

called expanded & compression versions of each. But, the quality of the set is no

improvement over the MX 80, which means that it is not as good as the ProWriter. A more

serious weakness is that the micro spacing, when using the proportional option,

precludes any known way of getting right justification in word processing. At first, I

thought it was my own lack of imagination that prevented doing so. Then, I learned that

the author of the widely admired Newscript has also given up and will not support this

printer. I am surprised that Epson, after having created the first modern, low priced

printer, has made such a disappointing successor to the MX line.

 Some of you are also subscribers and regular users of the Compuserve and of the

LDOS board there. For those who do not know of this board, I should like to suggest

that you take a look at it. All LDOS owners who subscribe to the ESA, which means all

who receive the Quarterly, may also join the LDOS board on Compuserve. A lot of

valuable information gets released there first, there are interesting discussions...and

some silly ones, too. However, it is a very valuable and rapid way of getting questions

answered regarding not only the use of LDOS, but general and specialized programming or

use problems.

 Be forwarned, however, that the hourly charge of $5, which seems moderate can

mount up rapidly if you become addicted to it. Try it anyway. At least, you don't have

a large entry fee like Source which demands $100 to sign up. If you do use the LDOS

board or others on Compuserve, try as much as possible to download messages into a file

rather than printing them since transmission will be slowed somewhat. I should also

recommend that you compose messages before accessing Compuserve, then upload them

directly from disk, using whatever communication program, such as LCOMM, that you wish.

 I am certainly no authority on the now becoming very fashionable 'C' language.

Wishing to learn it, I first purchased the (in)famous Kernighan & Ritchie book, the

bible to all 'C' users. Reading it is somewhat akin to reading the glosses to the

Epistles of St. Paul, in Old Irish yet! However, help is at hand. The increasing

interest in this language has brought forth a couple of new books. The best one, though

outrageously overpriced, is the Plum book. Published by Plum Hall at $25, (see why I

say it is overpriced?) directly from the publisher, or even more if you buy it

elsewhere, as the publisher does not offer any discount for re-sale. It is a very good

text to learn this language. However, a better bet for most of you may be 'The C

Primer' published by McGraw Hill. It is well written and very accessible to those of

who are either beginners to programming or who have relatively little experience. If

you are a programming whiz, forget this book, and get the Plum and/or the Kernighan &

Ritchie. As for the 'C Puzzle Book', it has errors but may interest you..........., if

you are a crossword puzzle fan.

 Finally, a word of warning to assembly language programmers working with LDOS. The

imminent release of LDOS 6.0, which will run on a screen of 80 x 24 and be a RAM based

system, means that you should be careful to avoid direct peeks and pokes into display

memory for you will risk compatibility problems when you convert programs to work under

this new LDOS. Be aware, too, that 6.0 uses supervisory calls; you should convert

whatever you are writing to use them rather than accessing the system vectors as we all

have habitually done.

 One more finally. My address is now 3WW Grenola, Pacific Palisades, CA 90272.

Correspondence directed to the old address does reach me, but with some delay.

PARITY = ODD

(c)1983 Tim Daneliuk, T&R Communications Associates

Well, here I am again trying to sift through several thousand pounds of new

software...if this keeps up, I can make a pretty good living just reselling the review

material that is submitted to me! By the way, as of about 2 months ago, I've been using

a LOBO MAX-80 almost exclusively for all of my computing chores. The more I use this

machine, the more I feel I can't live without it. It is so FAST, you almost forget

you're running a TRS-80 emulation. For those of you with MAXes, there is a new release

of LDOS. The function keys are now recognized, and you hard disk owners will be able to

boot from a HD partition. A few minor bugs were also cleaned up and the combination of

LDOS and MAX-80 is a very solid, reliable one.

RESULTS OF THE PARITY=ODD Poll #1

Those of you that have been reading this column for a while remember that I asked for

reader input on disk drive reliability several issues back. I finally managed to find

time to wade through your responses and organize the data a little. First, let me say a

big THANKS to all of you who wrote! Most of you not only included the drive

information, but a little about yourselves and how you use a TRS-80. All I can say is

that the "hacker" is far from dead in the microcomputer industry.

It must be emphasized that the drive poll was not taken in a scientific manner, with

controlled sample groups and so on. For this reason, don't take the results as

"gospel". All kinds of sampling error can creep in a poll like this, and the intent was

really just to get some general idea of how various drive brands compare. The numbers

below show only the performance of 5" floppies. Some of you submitted 8" drive

information, but there were not enough of you to include that information in the final

data reduction.

Here once again are the general reliability categories established for the poll:

1 - Never Failed

2 - Failed after heavy use

3 - Failed once within 1st year of average use

4 - Failed more than once within 1st year of

average use.

AND FINALLY, the results (a drum roll please!)...

 BRAND: MPI TOTAL NUMBER: 26 BRAND: TANDON TOTAL NUMBER: 19

 CATEGORY #1: 15 57.69% OF 26 CATEGORY #1: 9 47.37% OF 19

 CATEGORY #2: 1 3.85% OF 26 CATEGORY #2: 0 0.00% OF 19

 CATEGORY #3: 7 26.92% OF 26 CATEGORY #3: 7 36.84% OF 19

 CATEGORY #4: 3 11.54% OF 26 CATEGORY #4: 3 15.79% OF 19

 BRAND: SHUGART TOTAL NUMBER: 18 BRAND: SIEMENS TOTAL NUMBER: 16

 CATEGORY #1: 14 77.77% OF 18 CATEGORY #1: 13 81.25% OF 16

 CATEGORY #2: 1 5.55% OF 18 CATEGORY #2: 1 6.25% OF 16

 CATEGORY #3: 3 16.67% OF 18 CATEGORY #3: 2 12.50% OF 16

 CATEGORY #4: 0 0.00% OF 18 CATEGORY #4: 0 0.00% OF 16

 BRAND: BASF TOTAL NUMBER: 7 BRAND: TEAC TOTAL NUMBER: 2

 CATEGORY #1: 2 28.57% OF 7 CATEGORY #1: 1 50.00% OF 2

 CATEGORY #2: 1 14.29% OF 7 CATEGORY #2: 0 0.00% OF 2

 CATEGORY #3: 4 57.14% OF 7 CATEGORY #3: 1 50.00% OF 2

 CATEGORY #4: 0 0.00% OF 7 CATEGORY #4: 0 0.00% OF 2

One important thing to keep in mind, is that the fewer number of entries for a given

brand, the less reliable the results are.

As I mentioned above, many of you added comments and questions to your entries to the

poll. Several asked for help with specific problems ("How do I......with LDOS and the

tight writing schedule makes that impossible. A few of you also asked about my

upcomming book on LDOS. It is not scheduled to be completed until later this year, and

there will some delay after that getting it into print. When it does finally become

available, rest assured you will be notified!

DEALS, DEALS, DEALS

As a public service, here are a few spectacular deals I've run across lately. If you're

interested contact me on MNET or drop me a line.

************************* FOR SALE *************************

Speed-up kit for CRAY-I and CDC CYBER main CPU boards. Requires no trace cutting! Only

2500 solder connections to make.

TRS-80 Model I 4K With: Smal-LDOS, 8 Meg Winchester and Western Digital controller

board, CP/M conversion, lower-case mod. installed, and RS232. Lots of software

including communications software for async, bisync, HDLC, SDLC, and x.25 protocols.

Complete set of LDOS Quarterly magazines for the last 15 years. Includes ALL

anniversary issues.

Am interested in starting a user's group to exchange ideas, programs, and hardware tips

for ENIAC computers. Particularly interested in games, multi-user operating systems,

real time control, and missle fire control software. Prefer originals with complete

documentation. Also have some interest in developing user-friendly, menu driven, multi-

tasking, systems software for Hollerith machines. Only serious replies please.

**

LETTERS AND CORRECTIONS DEPT.

In the last issue of this column I stated that Electric Webster does not check to see

if a word you've entered as a correction is spelled correctly. Strictly speaking this

is true. However, the manual does explain a way to get the program to do this.

Personally, I think this ought to be a default condition. Speaking of Electric Webster,

there is a new version of the product which works with virtual word-processors like

SuperScripsit. Contact Cornucopia for more details.

Because of the disk drive poll, I've gotten a lot more mail than usual, and I thought

I'd share a bit of it with all of you. Skip Blumenthal from New York comments, "Gold

Plug 80's from EAP are a must." I agree! If you own a Model I, the 20 bucks or so for

these gold edge connectors will save you a lot of accidental reboot problems. EAP

advertises in the back of both 80-Micro and 80-U.S. so you'll have no trouble

contacting them. I use a set of these between my Model I and LOBO LX-80 interface with

excellent results. Richard Hertzel from Palm Springs writes that a SOLA constant

voltage transformer solved many of his hardware related problems. Again, I can confirm

this from personal experience. These transformers are on the expensive side, but you

can sometimes get a good deal at a Hamfest or local surplus store. If you do buy one,

be sure not to get a power rating too much higher than what you actually need. For

example, if all your equipment dissipates a total of 400 watts, get the 500 watt model

not the 1000 watt version. The reason is that this type of transformer works best when

it is running near it's specified power rating. I've been using one here for about a

year, and I don't even notice our "dirty" Chicago power anymore.

The most interesting letter came from Mike Johnson in British Columbia. He is the owner

of an LX-80 and expresses his frustration with software that won't run on it. He

suggests that I dedicate one of these columns to the LX-80. How about it LX-80 owners?

Are there enough of you out there in reader land that would be interested? Let me know,

and I'll be happy to do so. Mike also had a few pointed questions for me. In part he

said:

"...I wonder sometimes about your objectivity...if a program is written by any BIG

names it automatically gets a good review. A prime example is PMOD...the entire set

of Powersoft utilities could be replaced by Trakcess at a fraction of the price and

twice the performance. PRINT THAT!"

OK, Mike, I did! You may have a point. I see an awful lot of software in any given

month. Sometimes I don't have the time to really dig into it in the detail I'd like. I

suppose subconciously a "name" software author might get away with less scrutiny than

an unknown. I try not to let that happen, and on occasion I HAVE taken very famous

products to task for being poorly written or implemented or hard to use, or whatever

(e.g. Electric Pencil 2.0, FORTRAN-80). In general, the approach I take when I do

product reviews is threefold. First, does the product do what is claimed for it?

Second, does it solve a real problem; does it DO something, or is it just another

software "gadget"? Finally, is it being sold at a fair price? With regard to the

Powersoft Utilities, I have several other thoughts. First, they run on almost every

LDOS system, Trackcess does not (Powersoft still hasn't gotten some of the utilties

running properly on the larger hard disks). Second, Powersoft has just repackaged the

utilties at a much more reasonable price - the original price WAS ridiculous. Finally,

I always prefer products like the Powersoft utilties that work THROUGH the operating

system rather than in spite of it.

REVIEW OF THE MONTH CLUB

This issue, I'd like to finish off the set of reviews on spelling checkers and perhaps

draw a few comparisons between them.

The first one of interest is Proofreader from Aspen Software (now sold as the Random

House Dictionary). This product is written entirely in machine language and consists of

two parts, Proofreader and Proof-Edit. To correct a document you first pass it through

Proofreader which in turn generates a list of unknown words. At this point, you can

display the words on screen, send them to a printer, examine them and remove the ones

which are not truly errors, create a file which contains the bad words, or exit to DOS.

Typically, you first examine the words on screen, eliminate the ones which aren't bad,

and then create a file of the remaining words. You then use Proof-Edit to interactively

edit the words. Proof-Edit uses the bad word list created under Proofreader in

conjunction with the file being edited itself. One nice feature here is that you can

tell the program to accept an unusual word for the remainder of the session without

having to permanently add it to the dictionary. As with the other spelling programs

we've looked at, Proof-Edit allows you to look at words in context and correct them

interactively. It does not check the spelling of your corrections however. Once you are

through with the corrections, the program creates a new copy of your file with the

corrections in it. The file name is the same as your original except that the last

letter is incremented by one. TEST/DAT becomes TESU/DAT and so on. If by chance your

filename ends in 'Z', then an error message gets displayed and you have to manually

rename the source file and start all over again. This by the way apparently has some

bugs. Proof-Edit kept telling me that a file called PARITY/SCR ended in a 'Z'!

This is an extremely well written product from a technical point of view. Of all the

spelling programs I've looked at, it is the ONLY one that ran perfectly from day one

under LDOS without bugs (other than mentioned above), patches, and other convolutions.

It is reasonably fast and seems to do the job. However, the two part process of

checking a document is very clumsy and is a serious enough flaw that I hesitate to

recommend the product, especially for the novice user. Proofreader is available from:

 Aspen Software

 P.O. Box 339

 Tijeras, NM 87059

 (505) 281-1634

As of this writing I'm not sure what the present price is, so you'll have to contact

Aspen for more details.

The last spelling checker I looked at is the Radio Shack Scripsit Dictionary. This is a

very simple, straightforward product to use. It is intended to be used as both a stand-

alone product for Scripsit users, as well as integrated with SuperScripsit. Since Tandy

is still reworking the latter, I won't comment on how the integration works (Hint: Not

very well with the original SuperScripsit release, but hopefully better when the

reassembly is released!) The package works much like Hexspell in that you always

correct errors interactively with the unknown word shown highlighted in context. When

an unknown word is spotted, you can add the word to your list, correct it, or ignore

it. If you add the word, you are asked if the letter 's' is an optional ending, and if

so, that too is recorded. There are some interesting limitations with this program.

First, you can only add up to 255 words to the user list in any one session. Moreover,

that list is limited by the computer's memory, NOT available disk space. The upper

limit is around 2000 words on a 48K system, which is probably enough for most people.

Another limitation occurs when you are correcting a word. The Scripsit Dictionary will

only let you key in alphabetic characters in the correction. No numbers or symbols are

permitted. Finally, you must have a X'00' terminator byte on your file, or this program

"blows up" and recovers by returning to DOS Ready.

My feelings about this product are mixed. As usual, Tandy has ignored the DOS features,

so your keyboard drivers will be unrecognized. On the other hand, the product does work

with virtually no bugs. I'm told by some who have used this package more than I, that

it misses some words, but I never noticed that problem. Scripsit Dictionary is

available from Radio Shack stores for $149.

AND IN CONCLUSION

In the final analysis, my favorite of the bunch is Electric Webster from Cornucopia

Software. It's fast, easy to use, and full of great features like displaying the

dictionary. With a promise of a version for virtual word processors like SuperScripsit

and Wordstar, I think it is the ideal choice for almost everyone. A very close second

is Hexspell from Hexagon Systems. It IS capable of handling very large files. It would

be my number one choice for applications like an office, in which the users were very

unfamiliar with computers. This is principally because it is so easy to use and nearly

impossible to "blow-up". In fact, the only objection I have to this product is that it

is rather slow. Proofreader and Scripsit Dictionary are "me too" products. They do

work, but you can do a lot better for less money. Remember, these are MY opinions, and

I have been wrong (once or twice!). Before you buy, check around and talk with a few

other people to get their thoughts. Well, that about does it for now. Now, back to the

computer for some REAL hacking. Letsee, I left my LDOS master under that empty

sixpack......

[image: image2.jpg]From The Author of Super Utility Plus™
INTRODUCING

THE LDOS IITILI'I:IES

im Watt has written a complete set of utlties for use

Uik, SUPER Uiy - moss i work o oo sded,
ortoiddewea inclucing HADIO SHACKCS hardcrive) They o

OLSOX Conse

below: Requires LOOS 51.3. Contains complete documentation
. There s not room here to fully describe the package, so please write
for COMPLETE information. PMEI svinsiigani

Fe

O wmncied

R Compnerahe i CloanUp Uiy
[oy
s 0% Seas acors
Amsres AL v oAbt
Scion

4 Inm MECHANIC SET
FOR LDOS’

Kin's MASTER MECHANICS

SET condt o w smecion &

To0L80K

Pactage: s sy ahown

ress/can rosom

/e
o S pss siows
S e

SSrERTAST pgen o
T S tod e
g AT e

B R ssemarconten Enhance Your LDOS Operating System 339-95
With Either Set. A Powerful Collection From:

TOWERYOrC

Products from Breeze/S0, nc.
Available through selected dealers everywhere !
11500 Stemmons Fwy. Suite 125 Dallas, Texas 75229
To Order CALL TOLL FREE 1-800-527-7432
For product information (214) 484-2976

[image: image3.jpg]rMIS03YS

ANNOUNCES!

* Disassemble from
disk / memory

+ Disassemble to
disk/printer/video

* Automatic output
partitioning

* Full label generation

* Data area screening-
generates DB, DW

* $40+$2 S&H

MISOSYS
P.O. BOX 4

ALEXANDRIA VA. 22303

703-960-2998

(The LDOS File Editor)

A NEW release of the LDOS File
Editor now has built
Disascentler and direct disk
modify by track and sector. It
features an_enhanced SEARCH
mode as well as other new
commands .

Original FED 5.1 ONLY - $19.00
FED 11 5.1 - ONLY 39,00

FED 6.9 - ONLY $ 49.00
Plus $3.00 S&H per package

The BASIC Answer

6.9 version NEW RELEASE of The
BASIC Answer. 5.1 version had
overwhelning acceptance and
praise by those who have become
dedicated users. Designed to
construct code in a structured
manner. "Source" code is
created with a word processor
or text editor making use of
powerful editing and movement
features which are
characteristic of such
software.

Ava\lih]e fur running with 5.1

L00S for
$69.00

NEW - version for running with
LDOS 6.9 -
$79.00
Plus $4.00 S&H per package
BOTH PRODUCTS AVAILABLE FROM:

SYSTEMS
0

[image: image4.jpg]1cpmonaagaSCtorocosing

ag70 . 5ot Steet

Jengih. This alows totaly rekocatable BASIC

 asH
umnly i desned o show e ASIC b
o conirect o4 n s siciured

ot -Source code s created wih a word

aaiing and movement

o variabies n odor o oreaty auoment pro-

Jua orly Subrout
s means ot carae tching andconnes

o
s m,.u.m o ese o fsft
Sourca cod can i b crstd iy

1 the casa of coae whicn has not been

spocir
The BASIC Anwor comines the seldocu

usod
orocas s s code oy

maniing benain of COBOL wih the casull

¥ ACENT OVEROUE 88 THEN
'GOSUB & PRINTWARNING
(ENGOSUBS1009

201 Goschot label 3 apposed o are>g

power of 8 word processor. Ty a tmely
Combination.

TBA rurs on the TRS0 Mods! | o Il and
LOBOSMAXGO. Requros the 0031 Oper.

and werenced by rames whch ot ot

Slow) Contact your local dealr o Loocal
Sen o more ormation To ek The BASIC

function. such 85 & SORTNAMES, &
MNINRGHL & CALC MEDIAN e Lobls may

™

1%, 560,00 s
$400 shoping and nanding

___ QUIZINASTER __

QuizMaster is an educationalinformation question and answer

FIVE SUPPORT PROGRAMS INCLUDED

display a question and four possible answers. It scores the.

Five support oxtend, edi, print

rom one of threo skl levels.
Quister randomizes tho erdr of e hewar lo prevert
memorization. The queston; Extonded
o xandon a-oubion Soat veatte o ne skl sor

reconsiruct a fle that kU0 rers o
i e A nacking e sk s hat avo

Roavky s6iod 10 be.compeessed and vsa ek $pace more
effient

US. Information, Genaral trivia 45 wel as Fantasy and Sci
Ficion rvia. These fles can be increased or edted, o the user's

Other uses include:
© classroom testing

sl ha rumbor ofcsiainyou sosms.

o uncr the LDOK aperatin s (o oo 10 vz
masmum ficency The QuzMase oysiom include a he

« product knowledge and
© group entertainmen

.80 Model orllland LOBO's MAX.80.
5.1 Operating System. (LDOS must be pur-

QuizMasterrunsonthe TR
Roquires the Lt

Ghoice auestions on any subjoct. The systom s comprised o

for more information. To' gt QuizMaster order catalog
151500,

times.

WORD PROCESSOR-LIKE INPUT EDITOR
Forgas ofarin aninut et lows l asoarentcrsr
motion along with insert and delete mod ‘and fast
ciror postionng. This eatue b tound m bo the -AGe and
“Edie m

For information or ordering call(414) 3555454

IOGICAL
'SYSTEMS 8970 N, 55tn Stroet
0. Box 23956

5
s hiasres w522

[image: image5.jpg]QUARTERLY

April 1, 1083 Volume 2, Number 2

In this issue: New Headquarters:
® LDOS 6.0 Details! 0GICAL

® New Product Announcements we> ™S

® Part I: Learning Assembly Language OOo—

® Tandy Announces Model 4 e et

Miwaukee, Wi 53223
» (@14)355-5454

THE 'C' LANGUAGE (Part II)

Earl 'C' Terwilliger Jr.

647 N. Hawkins Ave.

Akron, Ohio 44313

 Last time, in Part I, I gave a very brief history of C, discussed its use of

storage (data or variable types) and introduced you to some other C language concepts.

 In this article, Part II, I will discuss more on functions. Also introduced will be

expressions and operators. A sample program will be presented to demonstrate some of

these newly introduced concepts.

 First, more on FUNCTIONS! Functions in C are analogous to subroutines in other

programming languages. They conveniently group commonly used expressions together.

Frequently used logic instructions, instead of being typed in multiple times throughout

the body of a program, need only be typed in once as a function. The function can then

be called whenever its logic process is needed. It is thus that functions can hide

confusing details in the main body of the program. Following the main logic flow is

then much easier. The programmer can see immediately what is going on and yet need not

be concerned as to how things are being done (C lends itself well to structured

programming techniques).

 In C, a function, like a variable name, has associated with it a storage class and

type. A C function with no explicit declaration is by default external (extern).

External functions can be called from multiple source files. A function may also be

declared as static. Remember, if declared as static, a function can only be called from

within the source file where it is typed in (defined). The type of a function can also

be specified. Are you thinking that functions are a collection of expressions, and

wondering how can they be assigned a storage type? Well, actually, the type associated

to a function refers to the value, if any, it returns. Functions, unlike variables,

need not but can be declared before they are used. The C compiler knows the difference

between an undeclared variable and a function by the left parenthesis '(' immediately

following the function name. Here are some examples of declaring a function:

 static char lnth(a,c);

 test();

The function lnth is declared to be only known within a single source module and

optionally returns a character value. The function test is known amoung multiple source

modules and optionally returns by default an integer value. It could have also been

declared as follows:

 extern int test();

The optional return statement is how the function returns a value back to its caller.

It is optional; i.e., the function does not have to pass back a value. Even if the

function does not return a value back to its caller, it is good programming practice to

include the return statement. If no return is found, control of the function "falls

thru" to the end of the function by reaching the ending right brace. Any expression

(value) can follow the return statement. Examples of the return statement:

 return;

 return (0);

 return ('x');

The first example of the return statement returns without passing back a value. The

return (0); which could also be written as return 0; returns back the value zero. The

last example returns the character 'x'. Although we haven't learned about the

expression below, I'll let you ponder over it just to show how an expression can be

used in the return statement:

 return (a ? b : c);

 Functions can also, optionally, be passed parameters. (Remember from last time that

these parameters are passed by value rather than by reference. Except for arrays, and

other parameters representing addresses of variables, each function gets its own

private copy of the variable.) These parameters are enclosed by the mandatory

parentheses denoting a function. It is the parentheses immediately following a variable

name that denote it as a function rather than a variable (data type). The optional

parameters passed to a function can be declared by default but it is a better

programming practice to explicitly declare them.

 The left and right brace {}, which enclose the expressions or logic performed by

the function, are the next ingredients to completing a function. The expression(s)

enclosed by the braces is/are called a block. (Blocks are not necessarily limited to

use in functions. As we will see later, they are also used in the main body of a

program. Enclosing braces are merely used to associate an expression or groups of

expressions as a single entity.)

 A complete example of a function is as follows:

 prtval (c)

 int c;

 {

 printf("The parameter value passed was %d",c);

 return;

 }

The function prtval is passed a parameter "c" which is declared to be an integer.

Within the braces of the prtval function, another function printf is called. The printf

function is part of the standard C function library. It is passed two parameters in

this example. The address of the string of characters enclosed in double quotes is the

first parameter. The second parameter passed to printf is the value of c. (More will be

discussed later about printf and standard C functions.) If necessary, functions can

call themselves. This process is called recursion.

 As mentioned in Part I, the main body of a C program is itself a function called

main(). It can call functions as needed to perform designated tasks. This main function

(the program itself) can have parameters passed to it. If parameters are passed to the

C program, the following syntax is used to declare them and the main() function itself:

 main (argc,argv)

 int argc;

 char *argv[];

 {

 ... program statements

 }

You are probably wondering, why only two parameters inside the () after main? Do I

hear you asking what happens when I type in a command to tell the operating system to

execute my program and I pass it more than 2 parameters? You should be asking! For

example:

 myprog p1 p2 p3 p4

Since this is a command line given to the operating system, there are actually 5

parameters or arguments. The program name itself is the first parameter and the 4

others are: p1, p2, p3 and p4. The main() function for the C program, myprog, would be

coded as is done in the example shown above. The declarations for the variables argc

and *argv suffice for all parameters passed to the C program in the command line. The

variable argc contains the number of parameters passed (including 1 for the program

name itself). The variable argv is actually a pointer to an array of pointers. Each

element of the array (one for the program name and one for each successive parameter)

is actually a pointer to the parameter. The * before the variable argv is a unary

operator. It says that the variable it preceeds contains an address. It uses this

address to fetch the contents stored there. What it actually fetches depends on the

variable's declared storage type. More will be said about arrays and pointers a little

later after a few more concepts have been introduced. You'll see the argv and argc

parameters in use in the sample C program below. Since we are talking about the command

line, a very useful feature is available through the special characters < and > typed

in on the command line. This feature of the C language is called I/O (input/output)

redirection. It allows C programs (or C program users which take advantage of this

feature) to be file and/or device independent. The C compiler provides a simple

mechanism for character at a time input and output. It does so by providing a mechanism

for "standard input" and "standard output". Each of these two mechanisms or "files" is

usually, by default, set up to be the user's terminal. The term redirection is used

when the default terminal standard input or output is redirected to or replaced by a

file. The redirection occurs via the > and < symbols preceeding a file name. The < is

used to redirect standard input. The > is used to redirect standard output. Two

functions from the standard library are available to a C program to perform the

character at a time input or Output. The getchar() function performs the input and the

putchar() function performs the output. Here again is the previous command example

(from above) with the I/O redirected:

 myprog p1 p2 p3 p4 <infile >outfile

When myprog uses the getchar() function to get an input character, instead of getting

it from the terminal, the character will come from the file "infile". Likewise, when

myprog uses putchar() to output a character, the character will be output to the file

"outfile" instead of the terminal. The number of parameters passed in the command line

is the same, i.e., the I/O redirection strings "<infile" and ">outfile" do not count in

argc and are not contained in argv! The C program, myprog, is not even aware that the

redirection has taken place. (INDEPENDENCE!)

 Let's move on to the next topic, that of variables, constants, expressions and

operators. Variables in C, and in any language, are used to manipulate data in storage.

The naming convention for variables, their storage class and their storage type was

introduced in Part I. A variable name is composed of letters and characters and

optionally the '_' character to improve readability of the name, as you can see:

 char byte_of_storage;

Don't forget to define (declare) variables before you use them. Also, don't choose a

variable name that is the same as a C reserved word (keyword or statement). If you do,

don't worry, the compiler will tell you!

 Constants are used in C, for the same reasons they are used in other languages. C

allows for several types of constants, i.e., number, character and string constants.

 It is usually good programming practice to use a special feature of the C compiler

to define constants. As you'll discover, "equating" a constant to a name wjll make it

easier to change later on. Just update it where it is "defined" and every occurence of

it will also be updated automatically by the C compiler at compile time. Here are some

examples of the C compiler directive #define:

#define MAXIMUM 1000

#define CLEAR 0x01C9()

#define CR 015 /* Octal value for a carriage return */

Note that constants, if given a name, are generally by convention represented by upper-

case names. The #define compiler directive functions to the C compiler as an EQUATE

directive functions to an assembler. (One line macros!) In the above examples, wherever

MAXIMUM is found in the C program it is replaced with 1000, likewise CLEAR is replaced

with the function call to address 0x01C9. Hex number constants are preceeded with a 0x

or 0X. Octal number constants are preceeded by just an 0. Another compiler directive

can be used to include a file containing multiple #define statements. For example:

 #include "file.ext"

This tells the compiler to include the contents (statements) in the file "file.ext".

Usually there are many "standard" constants, declarations and/or expressions which you

will include in most all of your C programs. This being the case, included with a C

compiler is usually a "standard header" file of the most common constants. This file is

what you will #include in most of your C programs.

 A character constant is formed from a single character enclosed in single quotes.

Certain special characters are represented with an "escape sequence" to denote it as a

special character. Here are some examples:

 'x' /* single lower-case character x */ '\n' /* newline */

 'A' /* single upper-case character A */ '\r' /* return */

 '\n' /* newline */ '\0' /* null */

 '\t' /* tab */ '\015' /* return */

 '\\' /* backslash */

 The last example shows how to generate any character you want. It is the \ followed by

1 to three octal digits. A string of characters is represented by characters enclosed

in double quotes. In C, a string is always terminated with a NULL or '\O' character. It

need not be typed in the string itself since the C compiler adds it on automatically.

An example?

 "Earl C. Terwilliger" /* My name as a string */

Note: the above string has a length of 19 and a size of 20. Don't forget the

terminating NULL added by the C compiler!

 Operators are the next topic. They specify what is to be done to variables and

constants. Operators when combined with variables and constants are called expressions.

As an expression is evaluated, there is a precedence or order of evaluation. It is

important to know the order of evaluation when the different types of operators are

combined in an expression, especially if you want a correct result! Below is a chart of

the operators available in C. It shows the relative order (level) of precedence, and

the associativity of operators of equal precedence. (The associativity is given to show

how expressions are evaluated if operators of an equal level of precedence are found

side by side.) The actual workings of each operator (with some sample expressions) will

be the topic of Part III. Here is the chart:

 Operators Level Type Associativity

 () [] -> . 15 Primary left to right

 ! ~ ++ -- - 14 monodactic right to left

 (type) * & sizeof 14 monodactic right to left

 * / % 13 arithmetic left to right

 + - 12 arithmetic left to right

 << >> 11 shift left to right

 < <= > >= 10 relational left to right

 == != 9 relational left to right

 & 8 bitwise logical left to right

 ^ 7 bitwise logical left to right

 | 6 bitwise logical left to right

 && 5 logical left to right

 || 4 logical left to right

 ?: 3 conditional right to left

 = += -= *= /= %= 2 assignment right to left

 |= ~= &= >>= <<= 2 assignment right to left

 , 1 comma left to right

Before I tell you goodbye until next time, I have a sample C program for you to look

at. It is a multiple file KILL utility program. The syntax for running it is:

 KILLEM file1/ext file2/ext file3/ext

Each file name passed to it will be a parameter. The KILLEM program will build the LDOS

KILL command and pass it to LDOS to execute for each file name parameter. The commands

built and passed to LDOS for the above example would be:

 KILL file1/ext

 KILL file2/ext

 KILL file3/ext

As you look at the sample program below, review the concepts learned in Part II. Not

all of the programs statements will be clear, but see how much you can understand. (Are

you looking at the comments?) See you next time!

 /* Multiple File KILL Utility */

 /* Author - Earl C. Terwilliger Jr. */

 /* Written for LDOS and the LC C compiler */

 #include stdio/csh /* LC standard header file */

 #option INLIB /* Special LC compiler option */

 #define CLEAR (0x01C9) () /* Rom call to clear screen */

 main(argc, argv)

 int argc; /* Declare parameters */

 char *argv[];

 {

 int c, rc; /* declare AUTOMATIC variables */

 char buf[100];

 CLEAR; /* Call to CLEAR function */

 puts("Multiple File KILL Utility by Earl C. Terwilliger Jr.\n\n");

 if (argc < 2) /* Must have at least 2 parms */

 {

 puts("Syntax: KILLEM file1 file2 ... \n");

 exit(); /* Exit back to LDOS */

 }

 while (argc > 1) /* More parameters still? */

 {

 buf[0] = 0x00; /* Set string to NULL "" */

 ++argv; /* Go to next parameter */

 strcat(buf,"KILL "); /* Concatenate these 2 strings */

 strcat(buf,*argv); /* Concatenate "kill" and parm */

 puts(buf); /* Display the string on video */

 rc = cmd(buf); /* Execute LDOS cmd and return */

 printf("\nReturn Code was %d\n",rc);

 --argc; /* One less to deal with now! */

 }

 }

ITEMS OF GENERAL INTEREST

Generally interesting this month is the following information. In the technical

documentation for the @RAMDIR call, the option to get the free and used space is

documented as needing a 4 byte buffer. This routine will actually require 16 bytes of

buffer space, with the space information being put in the 1st four bytes.

For MAX-80 owners, a patch to SYS0/SYS to tab past location 63 is (X'213B'=7F).

In keeping with the way things are on the Model III, the MAX-80 printer driver converts

linefeeds to carriage returns. If you wish to change that, apply the following patch to

SYS0/SYS: (X'03A8'=4F 28 0B 00 00).

Allocate files anywhere

We get so many requests to have LDOS allocate files from track 1 on up, rather than use

the random allocation it now has, that the following patch is being released. This

patch is identical for Model I, III, and the MAX80. In the patch, the "01" byte is the

value, in hex, of the track where the system will start looking for free disk space.

You can change it to be any track value desired.

D00,FE=2E 01 00 00 00 00

The following patches are for the 5.1.3 release of LDOS, Models 1 and 3 and the Max-80.

If your file dates are 02/05/83 (Mod 1), 03/20/83 (Mod 3), or 03/05/83 (Max-80), then

all of these changes have been made.

SECTION 1 - Model III and MAX80

Following are the patches applied to the 8/25/82, 9/20/82, or 10/15/82 version of LDOS

to make it equal the 02/05/83 release. These patches are for both the LSI and the Radio

Shack versions. If you have a version dated earlier than 8/25/82, you should send in

for an update rather than applying these patches. NOTE - some of these patches appeared

in the Jan '82 Quarterly.

MODEL III

 . FDCDVRA/F33 - 01/24/83 - BS

 . Patch SYS0/SYS.SYSTEM - Model III only, NOT for Max-80!

 . This patch will inhibit a 6 ms restore rate.

 .

 D04,03=09

 .

 . This part will cause the disk driver to use seek with

 . verify on a read or a write if the head is to be moved

 .

 D04,15=FD 7E 09 BA 30 02 CB E9 FD 7E 04 E6 0F B1 C1 D3

 D04,25=F4 32 23 44 F1 D0 FD CB 03 56 CC D4 45 C5 06 7F

 D04,35=CD 60 00 C1 C9 FD BE 05 C8 FD 72 05 06 1C C9

 D04,64=06 18 CD DC 45

 . EOP

 . FORMATB/F3X - 01/05/83 - RS

 .

 . This patch will cause format to properly use write

 . pre-comp.

 .

 X'60E5'=8B 67

 X'678B'=FD 56 05 C3 08 64

 . This patch allow settling before step (1.4ms) and

 . after each step (18ms).

 X'6115'=91 67

 X'6791'=CD 03 64 C5 01 44 00 CD 60 00 C1 C3 FE 63

 X'611F'=00 04

 . EOP

 . LCOMMB/F33 - for release "U"

 .

 . This patch will prevent buffer overflow during FS or FR.

 .

 D07, B3=12

 . EOP

 . LBASICB/F33 - 01/23/83 - for release "U"

 . This patch will cause the &H constant to allow spaces

 .

 D08,7F=D7 00

 . EOP

 . SYS12D - 02/05/83

 . Corrects minor problems in RAMDIR

 .

 D00,98=87

 D00,D9=72

 D00,E6=00 00 00

 D01,2C=00

 . EOP

SECTION 2 - Model III

For MODEL III with file dates earlier than 03/20/83, apply the following patches:

 . SYSTEM/FIX - 03/16/83 - Model III - Ver U

 . MODEL III patch to use Mod 4 Fast/Slow command

 . Not for the MAX-80!

 . Patch SYS7, and also apply SYS0B patch

 .

 D0D,A2=21 10 42 CB F6

 D0D,AE=21 10 42 CB B6 3A 10 42 D3 EC

 . EOP

 . SYS0B/F33 - 03/16/83 - MODEL III - Ver U

 . Make Mod 3 use Mod 4 Fast/Slow command

 . SYSTEMB must also be applied to SYS7

 . Not for the MAX-80!

 .

 D0F,66=EC 78 21 10

 . EOP

 . LCOMMC/F33

 . Fix problem with buffer overrun in FR

 D05,1D=AF C9

 . EOP

MODEL I

 . FORMATB/F3X - 01/05/83 - RS

 .

 . This patch will cause format to properly use write

 . pre-comp.

 X'60E5'=8B 67

 X'678B'=FD 56 05 C3 08 64

 .

 . This patch allow settling before step (1.4ms) and

 . after step (18ms)

 X'6115'=91 67

 X'6791'=CD 03 64 C5 01 44 00 CD 60 00 C1 C3 FE 63

 X'611F'=00 04

 . EOP

 . LCOMMB/F31 - for release "U"

 .

 . This patch will prevent buffer overflow during FS or FR.

 .

 D07,AE=12

 .

 . EOP

 . LBASICB/F31 - 01/23/83 - for release "U"

 .

 . Update the version and date message

 D00,F9=33

 D00,FE=35

 .

 . This patch will cause the &H constant to allow spaces

 .

 D08,6E=D7 00

 .

 . EOP

 . SYS12D - 02/05/83

 . Corrects minor problems in RAMDIR

 .

 D00,98=87

 D00,D9=72

 D00,E6=00 00 00

 D01,2C=00

 . EOP

 . LCOMMC/F33

 . Fix problem with buffer overrun in FR

 D05,18=AF C9

 . EOP

Improved BINHEX/BAS

Following is a BASIC program called BINHEX/BAS. Is used to convert the hex code

listings of programs into an executable file. The procedure to follow is:

1) Create an ASCII file containing the hex code as listed, leaving out the spaces. This

can be done with the BUILD library command or any word processor that can save an ASCII

file. Be sure to end each line with a carriage return, and do not have more than 254

characters per line.

2) The last byte in each listing should be the checksum. It will be proceded by an

asterisk (*) This byte should not be typed into the ASCII file.

3) Run the BINHEX program, specifying the Hex to Binary mode. Compare the checksum

generated by the BINHEX program to that in the listing. If they do not match, check the

ASCII file to find the mistyped byte(s).

This program is SIMILAR to one listed in earlier Quarterlies. This version, however,

does have the checksumming feature built in. Lines 240, 265, 270, 280, 300, 310, 320,

330, 465, 470, 515, 520, 530, 540 and 550 were added or changed.

10 REM -- Hex to binary/Binary to hex file converter

20 REM -- Tim Mann

30 CLS:PRINT:PRINT"Hex to binary/Binary to hex"

35 PRINT" file converter":PRINT

40 CLEAR 5000

50 GOSUB 58000

100 PRINT "Type 1 to convert a binary file to hex"

110 PRINT " 2 to convert a hex file to binary"

120 PRINT:INPUT D

130 PRINT

140 ON D GOTO 400,200

150 GOTO 100

200 LINE INPUT "Hex file name: ";HF$

210 LINE INPUT "Binary file name: ";BF$

220 OPEN"I",1,HF$

230 OPEN"O",2,BF$

240 IF EOF(1) THEN 300

250 LINE INPUT#1,D$

255 IF D$="" OR D$="OK" THEN 240

260 FOR I=1 TO LEN(D$) STEP 2

265 DN=FND2(MID$(D$,I,2)) :SU=SU+DN

270 PRINT#2,CHR$(DN);

280 NEXT I:GOTO 240

300 IF SU>255 THEN CS=SU-INT(SU/256)*256 ELSE CS=SU

310 CS$=FNH2$(CS)

320 CLOSE:PRINT:PRINT"Done - Checksum = *"CS$:SU=0

340 GOTO 100

400 LINE INPUT "Binary file name: ";BF$

410 LINE INPUT "Hex file name: ";HF$

420 OPEN"RO",1,BF$,1

430 OPEN"O",2,HF$

440 FIELD 1,1 AS F$

450 FOR I=1 TO 30

455 IF EOF(1) THEN 505

460 GET 1

465 DN=ASC(F$):SU=SU+DN

470 PRINT#2,FNH2$(DN);

480 NEXT I

490 PRINT#2,

500 GOTO 450

505 PRINT#2,

510 CLOSE

515 IF SU>255 THEN CS=SU-INT(SU/256)*256 ELSE CS=SU

520 CS$=FNH2$(CS)

530 PRINT:PRINT"Done - Checksum - *"CS$:SU=0

550 GOTO 100

58000 DEF FNH1$(X)=MID$("0123456789ABCDEF",(X AND 15)+1,1)

58010 DEF FNH2$(X)=FNH1$(X/16)+FNH1$(X)

58040 DEF FND1(X$)=INSTR("123456789ABCDEF",LEFT$(X$,1))

58050 DEF FND2(X$)=FND1(RIGHT$(X$,1))+16*FND1(RIGHT$(X$,2))

58070 RETURN

60000 END

The VIDSAV program on Filter Disk #2 will abort with an error if a JCL file is used to

install it. The following patch will correct this problem.

 . VIDSAVA/FIX - 04/15/83

 . Fix problem when installing w/JCL, PATCH VIDSAV/CMD

 D00,1E=00 00 00

 D00,45=00 00 00

The DIRCHECK program on Utility disk #1 could give a false error report on certain hard

disks or double sided drives. Here is the fix.

 . DIRCKA/FIX - 02/14/83

 . Patch DIRCHECK/CMD on Utility Disk #1

 . Fixes a problem with certain hard drives and

 . double sided disks

 D00,F3=FD CB 04 6E 20 15 FD CB 03 5E 28 12 5F FD 7E 07

 D01,03=E6 E0 7B 28 09 CB 08 00 00

 D01,10=00 00

The NODAM program published in the October '81 Quarterly would not work properly if an

error was encountered when reading the source disk. The following is a corrected

version. For those who are unaware of NODAM's function, it is a program to allow

reading a TRSDOS 2.3 Model I disk on a Model III, LX-80 system, or a MAX-80 without the

need to use REPAIR. To use it, issue the command NODAM :d, where "d" is the drive

number containing the TRSDOS disk. Then, use the DEVICE command to log in the drive.

You may then copy files directly off of the TRSDOS disk.

05 06 4E 4F 44 41 4D 20 01 02 00 52 E5 21 6B 52 CD 67 44 3A 25 01 FE 49 21 49 40 20 03

21 11 44 22 35 52 22 3E 52 E1 7E 23 FE 20 28 FA FE 3A 20 3D 7E FE 30 38 38 FE 38 30 34

D6 30 4F CD 8F 47 2A 00 00 01 2B 00 B7 ED 42 22 00 00 23 E5 21 E9 52 FD 7E 01 77 23 FD

7E 02 77 E1 FD 75 01 FD 74 02 FD CB 03 FE EB 21 D9 52 ED B0 C3 2D 40 21 C7 52 CD 67 44

C3 30 40 1F 4E 4F 44 41 4D 20 2D 20 4F 6C 64 20 44 61 74 61 20 41 64 64 72 65 73 73 20

4D 61 72 6B 20 72 65 61 64 65 72 20 2D 20 56 65 72 20 31 2E 30 61 0A 43 6F 70 79 72 69

67 68 74 20 31 39 38 32 20 62 79 20 47 61 6C 61 63 74 69 63 20 53 6F 66 74 77 61 72 65

2C 20 4C 74 64 2E 0A 0D 42 61 64 20 64 72 69 76 65 20 6E 75 6D 62 65 72 21 0D 18 08 00

00 05 4E 4F 44 41 4D FD CB 03 FE C5 CD 00 00 C1 C0 F5 7A FD BE 09 20 0E 78 FE 09 28 04

FE 0A 20 05 F1 3E 06 01 06 00 53 B7 C9 F1 C9 02 02 00 52

*25

LDOS: HOW IT WORKS - The REPAIR, CONV, and COPY23B Utilities

Moving files from other DOS'es discussed

or--- Yes, you can get there from here.

This month, we will discuss, among other things) the REPAIR, CONV, and COPY23B

Utilities. First, let's look at the REPAIR Utility.

REPAIR (ALIEN)--- sounds pretty nasty, eh? Well, actually it's quite simple. LDOS

maintains certain pieces of system information in different areas of the diskette.

REPAIR (ALIEN) will modify these areas so that they conform to LDOS standards. The

resulting diskette will be readable by LDOS. Immediately, you should make a backup to

an LDOS formatted diskette, and retain the original as a master copy. When should it

be used? Anyone with a Model III, a LX-80, or a MAX-80 will need to use it before

transferring information from certain types of diskettes.

When is it necessary to use REPAIR?

Model I Owners: You will not normally need to use REPAIR for Mod I TRSDOS, but other

Model I operating systems may require it. If you are having trouble reading a

diskette, you may need to REPAIR it. To read Model III TRSDOS (assuming you have

double density capability), use CONV, and do not use REPAIR.

Model III, LX-80, MAX-80 Owners: As a general rule, you will need to REPAIR any Model

I non-LDOS diskette, and LDOS diskettes earlier than 5.0.2. Model III non-TRSDOS

diskettes will probably also require repair. Model III TRSDOS should be CONVerted, not

REPAIRed.

After REPAIRing a diskette, odds are that it will no longer be usable by its original

operating system. If you have a Model I system, you can restore the diskette to its

original condition-- see the article about OLDDAM, elsewhere in this issue. If you

have one of the 'other' machines, and cannot afford to alter the diskette in question,

see the artice about NODAM, also elsewhere in this issue.

Clear as mud, you say? Well, not to fear, as the General Conversion rules accompanying

this article will clean up any confusion.

For example, let's say that we have a TRSDOS 2.3 diskette with a very valuable business

program on it, and we need to move it to LDOS, for use on our Model III. First, boot

with LDOS. Then, place the TRSDOS 2.3 diskette in drive 1. Type:

 REPAIR :1 (ALIEN)<enter>

The TRSDOS diskette will now be readable by LDOS. Remember, however, that the diskette

will no longer work as TRSDOS 2.3. COPY INVADERS/CMD:1 :0 (or other appropriate

filespec) will move our valuable business program from the TRSOOS 2.3 diskette to our

LDOS diskette in drive 0.

Now, how about CONV? CONV is used for the transfer of files from Model III TRSDOS 1.2

or 1.3 to LDOS. Model I owners must have some form of double density capability to use

this utility.

Again, let's take an example. With our LDOS booted, and in drive 0, place the TRSDOS

1.2 or 1.3 in drive 1. Type:

 CONV :1 :0<enter>

CONV will display the name of each of the files on the TRSDOS diskette, requesting

permission to transfer it. A response of 'Y' will result in the transfer of the file,

and 'N' will skip it. After all the filespecs have been displayed, control will be

returned to LDOS.

But, you say, there I was, unaware of the ways of the world, running under Model III

TRSDOS (before I knew about LDOS). I er, a, ...I created a data file on a TRSDOS

diskette that's too big to fit on a LDOS minimum system diskette, and I only have two

disk drives.

Oh? No problem-- a simple, little known use of the SYSTEM command will do it.

1) Place system files 1, 2, 3, 4, and 8 in high memory. First, clear out high memory.

Eliminate all but absolutely necessary modules (PDUBL or RDUBL, for you Mod I users).

Next, use the SYSTEM (SYSRES=1) command to place SYS1 in high memory. Repeat this for

all previously named system files (see this month's JCL corner for an easy way to do

this).

2) Format an LDOS data disk, and keep it handy.

3) With your LDOS system in drive 0, and the TRSDOS diskette in drive 1, type:

 CONV :1 :0

4) When the filename is read, and you are prompted for permission to convert the file,

remove the system diskette from drive 0, and replace it with the empty, LDOS data

diskette. Respond Y <enter>.

5) At LDOS Ready, re-insert the LDOS system diskette.

That's it!

But what about COPY23B/BAS? Only use COPY23B/BAS on Model I TRSDOS 2.3B diskettes.

Again, 'other' machine users must use REPAIR :1 (ALIEN), Model I users may proceed

directly. LBASIC, COPY23B/BAS, and sufficient empty space must be present on your

drive 0 diskette. Place the TRSDOS diskette in drive 1, and type:

 LBASIC RUN"COPY23B"<enter>

When prompted, give the source and destination filespecs. When 'Ready' appears, type

CMD"S"<enter> to return to LDOS, or RUN<enter> to transfer another file.

General Conversion Rules:

Mod I TRSDOS 2.1 | Mod I users may copy directly (write-protect first).

 2.2 | Mod 3, LX-80, and MAX-80 users must REPAIR (ALIEN) the

 2.3 | diskette first, and then copy any desired files. The

 | diskette will no longer be usable by TRSDOS. See

 | information about "Those Damn DAM's".

 2.3B | Use COPY23B/BAS (Model I ONLY!). If Model 3 version is

 | present also, use that instead if possible. If TRSDOS

 | 2.3B must be converted on a Model 3, LX-80 or MAX-80, you

 | must REPAIR (ALIEN) first, and then use COPY23B/BAS.

 2.7DD | Get 2.8DD from Radio Shack.

 2.8DD | Copy to single density, 35 track diskettes, using the

 DBLDOS | operating system in question, then treat as Mod I TRSDOS

 DOSPLUS | 2.3. Non-Mod I cautions apply.

 NEWDOS |

 NEWDOS+ |

 NEWDOS80v 1.0| NOTE: must have 2 gran (single track) directory.

 2.0|

Mod 2 TRSDOS 2.0a | Use the READII/CMD program. See Utility Disk #1. Eight

 | inch, double density drives required.

Mod 3 TRSDOS 1.2 | Use the CONV/CMD program. Mod I users must have double

 1.3 | density.

CP/M | See the CONVCPM product, catalog #M-35-220. Appropriate

 | drive size and type required.

After transfer, all necessary modifications to ensure proper operation under LDOS must

be installed by the user, and are the responsibility of the user. Some patches for

Radio Shack software are available from LSI on our 'FIX Diskette'.

Roy's Technical Corner

 Well, I'm back. For those that may have missed my column last quarter, rest

assured that I was not idle. I'm sure that by now, everyone realizes that the LSI folks

were hard at work designing and implementing the 6.0 version of LDOS. My job is to

design the architecture of the DOS as well as oversee the implementation of critical

modules. I also have a direct hand in implementing the kernel of the DOS and those

modules that have a high degree of interfacing to that kernel. So you see, I have been

busy. All this goes on while MISOSYS (my own company) activities take a back seat.

 My wife, Brenda, has been handling the MISOSYS orders. If you have contacted us or

ordered a product, you would probably have dealt with her. She should be on the job

until our newborn arrives (expectation is late June). Very little software development

has taken place at MISOSYS except, of course, the 6.0 project. We have found a little

time to convert products to run under the 6.0 system. If you are in commercial software

development, you will find that 6.0 is very pleasant to work with. MISOSYS also had

some software development activity handled by the local hackers - Washington D.C. area

has quite a good stock of hackers. The latest piece of software is announced in this

Quarterly - ZSHELL. This LDOS adjunct adds features that could become absolutely

essential to your day-to-day operations. ZSHELL was written by Karl Hessinger and was

inspired by some of the functions in LC.

 Another new product is version III of the MISOSYS disassembler. This product has

been long overdue. Since we wanted to be first with a disassembler running under LDOS

6.0, and since we did not want to release version II under 6.0, I was forced into

pushing its development. Lo and behold, work went quickly. I am quite happy with the

version III product. It supports direct disassembly from disk. It supports automatic

partitioning of output files. It supports 100% labeling - before, after, and

interstitially. It accepts a screening data input file to properly decode user selected

regions as literals, byte data, or word data. We also kept the cost low.

 I have also prepared the 6.0 compatible versions of EDAS-IV, PDS, and DSMBLR III,

called PRO-CREATE, PRO-PaDS, and PRO-DUCE respectively. We hope to have a 6.0

compatible version of LC available soon - soon after the 1.0b version is finished.

 Enough of this miscellaneous chit-chat. It just serves as a prologue to the

primary discussion. Since I have found the conversion of 5.1 compatible software an

easy task, I want to start presenting in this column, some of the design differences

and interfacing differences between LDOS 6.0 and its predecessor series, 5.x. Please

note that although the first announced 6.0 is named "TRSDOS", it was so named as a

contractural obligation to the client - similarly to the IBM PC (PC-DOS versus MS-DOS).

This column will continue to use the term "LDOS 6.x" as this publication is published

by LSI. However, any reference to LDOS implies applicability to any LSI version 6.x DOS

including TRSDOS 6.x.

 Let me first pinpoint the primary design obligation since one key requirement was

paramount throughout the entire design and implementation period. The goal of LSI that

stands above all other goals is to ensure MEDIA COMPATIBILITY. This means that we need

to be able to take a diskette and use it across all machines running LDOS - so long as

the hardware permits that size diskette. Since day one, LSI has had a "standard" 5-1/4"

structure - both single density and double density. We have also had a "standard" 8"

diskette structure. The structure goes beyond just the format and allocation schemes -

it covers the entire directory makeup. Thus, even though we may want to add a new

feature (such as time-stamped directories), if it means changing the diskette so that

it is unusable under 5.1 or 5.0, then it cannot be done. LDOS 6.x diskettes are

directly usable under 5.x versions, and vice versa.

 The media compatibility does not mean that programs executing under 5.1 will

execute under 6.0 Lsee my later statements concerning SVC interfaced programs under

5.1]. The hardware architecture chosen for LDOS 6.0 is different than that running LDOS

5.x. LDOS 6.0 is designed to function on Z-80 based microcomputers with a minimum of

64K RAM and 80 by 24 video screens. The DOS is designed to operate starting from

address X'0000' (page 0 origin). LDOS 6.0 is 100% SuperVisor Call (SVC) accessed. There

is NO hard location for anything associated with the DOS except the hard locations for

the RST Z-80 instructions and the NMI vector. Those data items felt to be needed by

application software running under LDOS 6.x are available via SVCs and NOT by hard

address. I cannot overemphasize this fact.

 Functionally, LDOS 6.x is partitioned into seven regions: system low core

(LOWCORE), Input/Output driver region (IOR), resident system (SYSRES), System Overlay

Region (SOR), Library Overlay Region (LOR), User Program Region (UPR), and high memory

region (HIMEM). The UPR extends from X'3000' through HIGH$. LDOS 6.x normally does not

use HIMEM; however, certain user-specified requests must be satisfied by use of high

memory. For example, SPOOL filter and buffer space use high memory. KSM filter and data

space use high memory. These are uses corresponding to LDOS 5.x functions. Programs,

similarly, must honor HIGH$ - which is available via an SVC.

 The SVCs supported under LDOS 5.x are still supported - with three exceptions. The

@CMD SVC (#23) has been dropped since its function was identical to @EXIT. The DIRCYL

SVC (#83) has been dropped. Its function can be obtained by using SVC 81 which gets the

Drive Code Table address for a logical drive into register IY which can then be indexed

by nine to pick up the directory cylinder. The last difference is that the HIGH$ SVC

(#100) has been altered to add a function code in register B. All other LDOS 5.x SVCs

are supported. Device I/O handling has been changed so that the return code (Z/NZ

indication) may mean something different. More on this later. More than seventeen SVCs

have been added - some very significant ones.

 Let me first discuss device I/O under LDOS 6.x. Since we are now controlling the

entire device handling without a miscoded ROM in the way, device I/O has been improved.

The return code used in byte I/O is identical across logical and physical devices.

Thus, byte I/O via one of the logical devices (i.e. *KI, *PR, *SO, ...) is handled the

same way regardless of the physical device identified in the Device Control Block (DCB)

- be it physical keyboard, printer, or disk file. Applications are now expected to deal

with return codes in all byte I/O. For example, A Z-status in response to an @GET

indicates a character received without error (the same would be true for @KBD since

that SVC uses @GET). An NZ-status with A=0 indicates no character received (i.e. NO

ERROR).

 Routing, filtering, and linking is now completely supported - devices may be

routed to files and subsequently filtered and linked. A priority level has been

established to the device TYPE byte bit assignments: file, NIL, route, link, and filter

(file being the highest). The scheme employed in filter interfacing has been changed to

improve the integration of filters into the device chain. Filters are assigned control

blocks in the DCB table area. The DCB table now supports up to 31 entries. Each device

driver and filter has its own entry. The establishment of a LINK also uses a DCB entry.

Because of this, there is available technical documentation on the system which covers

the device driver and filter templates to be used for user-written filters and drivers.

 The primary console devices, keyboard and video, are generally not resident in

memory-mapped space under LDOS 6.x. This means that applications cannot peek or poke

the video screen or keyboard values. All *KI and *DO I/O is done through the system. In

order to accomodate direct access of the video screen, a video control SVC (VDCTL) is

available to PUT and GET characters by "row,column" notation. This would simulate the

old peek and poke of the video. The VDCTL SVC also permits I/O transfer of the entire

2K block of video as well as cursor manipulations. Since keyboards can be matrix or

ported, all key codes are input via the *KI device. This means a uniform set of codes

for every application.

 A significant change was introduced in the exit procedures of applications.

Instead of just exiting via @EXIT or @ABORT, a single exit (@EXIT) is used with

register pair HL containing a return code. A return code of zero indicates a successful

execution. Any non-zero value in HL indicates an error exit. If executing from JCL, the

exit condition is checked to determine if JCL should abort. All LDOS 6.0 supplied

modules will exit with register pair HL set to either zero, the primary error number

(1-63) if the exit is invoked because of a primary error, or negative one (X'FFFF') if

some extended error has occurred. For the convenience of programmers, an @ABORT SVC is

supported which just sets HL to X'FFFF' and goes to @EXIT. If an application properly

maintains the stack pointer (SP), then it may exit via an RET instruction since LDOS

pushes the @EXIT return address onto the stack before giving control to a program being

executed from @EXIT or @CMNDI. LDOS LIBrary commands and most utilities also properly

maintain the SP and are available for execution from within application programs by

invocation via the @CMNDR SVC. If your applications are properly written, they too may

be executed in this manner.

 In order to prepare for hard-disk multiplexing, the directory maintains a "file

open bit" for each file. This bit indicates that a file is already open for access

greater than READ. Any subsequent attempt to OPEN a file with this bit set will force

READ access (unless a lower access level is noted by the OPEN). An appropriate return

code is made to the OPENer. While I am discussing access, let me state that the terms

"UPDATE" and "ACCESS" as applied to passwords have been dispensed with. They are

replaced by the terms, "OWNER" and "USER". This is partly to minimize confusion with a

new level of access which has also been introduced. Files may be protected with an

"UPDATE" access level. This means that a file opened with UPDATE access may be READ

from or WRITTEN to; however, the end-of-file (EOF) cannot be extended. Note that this

also means that files opened with UPDATE or greater access - even if you only intend to

read them - must be closed when you are finished with them. If not closed, the file-

open bit remains set; thus subsequent OPENs get the "file already open" error. A

LIBrary command, RESET filespec, has been added to "reset" that bit if a file was

inadvertantly left open. Incidentally, a "global" password is not a part of LDOS 6.x.

No longer can you use "RS0LT0FF" to access everything.

 For those programmers interfacing from assembly language programs, the parameter

scanner, @PARAM, has been improved. It now provides a response byte that indicates the

type of user response to each parameter entered on the command line - be it numeric,

string, or flag. If string, the length of the string is also returned. A new format is

supported that provides a byte to indicate the length of each parameter word as well as

the types of responses acceptable. A bit is assigned to indicate that a single

character abbreviation is acceptable for the respective parameter. Thus, a more compact

parameter table can be constructed to conserve space in your program. The LDOS 5.x

table format is still supported via the same SVC.

 LDOS 6.x now distinguishes between SYSTEM disks and data disks. Data disks may use

all directory slots (except the two reserved for BOOT/SYS and DIR/SYS) for files. This

provides for an additional fourteen files per DATA disk. SYSTEM disks are created

during the process of backing up an existing SYSTEM disk to a DATA disk.

 We now support a bank-switching SVC when the hardware implements memory bank

switching. The SVC permits switching a memory segment (usually the top 32K) with up to

seven auxiliary 32K memory banks. We also support the controlled transfer of execution

to a location within the bank at the option of the user. The system maintains

supervision of the resident bank to ensure that the standard bank (bank 0) is always

resident during certain operations (byte I/O, disk I/O, and interrupt handling).

 The bulk of LDOS 6.x is now machine independent. We expect to not alter LIBrary A,

LIBrary B, or most utilities as 6.x is implemented on other machines. We have been able

to accomplish this in large part due to the SVC interfacing structure. SYS8/SYS has now

been made into a LIBrary module - LIB C. This incorporates members that are deemed to

be machine specific code. For example, FORMS, SETCOM, SETKI, and SPOOL are members of

this partitioned data set library. SYSGEN and SYSTEM are two other machine-dependent

LIBrary commands. What this means to you as a programmer is that once you write an

application to run under LDOS 6.x, it should run on any machine we put version 6. All

you need do is utilize the standard interfacing procedures documented. Let the DOS do

what an operating system is supposed to do - interface the application to the hardware.

 The last thing to mention for now is that there is no KILL command in LDOS 6.x. I

have perservered in my quest to make the system less violent. The command to get rid of

unneeded files is "REMOVE". Enjoy LDOS 6.x. I will be discussing more details of this

system in future issues of THE LDOS QUARTERLY.

THE JCL CORNER

By Chuck

Hello once again from the JCL corner of LDOS-land. This issue's column will cover a

practical use for the compile phase of JCL, and also show an easy way to make backups

with a JCL file - even though it may involve removing the disk containing the JCL file!

As usual, I'll also answer some general interest questions received over the last 3

months.

To start things out, let me describe a practical use for a compiled JCL file, and

explain how to build one. For those of you who are new to LDOS and JCL, the difference

between an "execute" JCL file and a "compile" JCL file is as follows:

 A file that contains no special JCL compilation macros can be executed directly. The

 most common type of execute file is one containing LDOS commands to set up a

 configuration or start up an application program.

 A file that wishes to do logical testing, substitution, etc. using the JCL

 compilation macros MUST be compiled.

 (See the DO Library command for instructions on how to compile a JCL file.)

Something that most of us with LDOS 5.1 or 6.0 have needed to do at one time or another

is to reside certain system modules in memory. This is done with the SYSTEM (SYSRES=)

command. However, if more than one module is to be resided, the SYSTEM command has to

be repeated for each module. That takes many keystrokes and also introdcuces the chance

for typographical errors to sneak in. Here, then, is a perfect candidate for a JCL

file.

To start out, let's name this file S/JCL. Since the file is to be compiled, and there

are many different system modules that can be resided, the //IF macro seems to be the

choice for selecting desired modules. Briefly, the use of the //IF is:

 //IF token (if the statement is true)

 these line(s) will go into the file

 //END (end of the //if checking)

The easiest way to build up the JCL file will be a series of //IF,//END blocks

containing the SYSTEM command to sysres the desired module. Since one of the purposes

of this JCL is to reduce keystrokes, some care should be taken when selecting the token

names. For example, if you use tokens such as SYS2, SYS3, etc., then you would have to

type in:

 DO S (SYS2,SYS3,SYS8,etc.)

While this is easier than typing in separate SYSTEM commands, it can be made even

easier if shorter token names are used. If you think that S2, S3, etc. is the shortest

token that you can use - guess again. According to the definition of a token, it can

consist of alphanumeric characters. Nowhere does it say that a token has to start with

a letter! Thus, for ultimate ease of entry, our JCL file becomes:

 //IF 1

 system (sysres=1)

 //END

 //IF 2

 system (sysres=2)

 //END

 etc.

Our DO command line can then be something like:

 DO S (2,3,8,10)

In this example, it takes only 14 characters typed in to reside four system modules,

versus 72 characters if done without a JCL file.

On to another slightly related subject. A user wrote in with the following question:

"I have a line in a JCL file that is BACKUP :1 :2 (DATE=#A1#). No matter what token

value I specify for A1, I get a Parameter Error from BACKUP and the JCL aborts. I have

tried A1=03/15/83- and A1="03/15/83-". What am I doing wrong?"

At first glance, the second substitution looks fine, where A1 is equal to the date

enclosed in quotes. However, make a one line JCL file and compile it, listing the

resultant SYSTEM/JCL file. It will show that NO substitution took place! Why, you may

ask. As long as you asked, I'll tell you why. The value assigned to a token can consist

of alphanumeric characters, as well as a slash (/), a period (.), and a colon (:). No

other characters are allowed. This being the case, the solution for the problem is to

rewrite the line as BACKUP :1 :2 (DATE="#A1#-"), and use the value of A1=03/15/83 on

the command line.

As long as we're on the subject of the Backup utility, several requests have come for a

method to do Backups with a JCL file, even though it requires removing the drive 0 disk

or the disk containing the JCL file. Normally, this cannot be done, and will cause a

system failure. The easiest solution to this problem is NOT to do the actual backup

with a JCL line, but have JCL load a BASIC program to do the backup. For example:

 LBASIC RUN"BACKUP/BAS"

 //STOP

 10 REM Make a Backup of the data

 20 CMD"BACKUP :0 :1 (X)"

 30 CLS:INPUT"All done - put original disk(s) back in, press <ENTER>";A$

 40 CMD"S"

In this case, the BASIC program would be handling any prompting and/or error trapping.

Although this is just a very simplified example, it will overcome the problem of using

a JCL file to backup a data disk in a two drive system, etc.

JCL QUESTION OF THE QUARTER

The correct answer to last issue's question was that Doing the file with no tokens

specified caused an abort. This was due to the fact that a //PAUSE line became the

first line in the file, and we all know that is a no-no. The three winners were Ted

Kingston (Strathmere, NJ), Richard Edgar (Madison, WI), and Al Brown (Tulsa, OK). By

the way, I use a very scientific method to choose three winners from correct entries -

I put them in a large trash bag, shake it up, and let three of the staff members reach

in and pick out an entry. Anyway, here is this month's question. As usual, three of you

who send in correct answers will get a free software package. The deadline will be

around June 15th.

Here are several files, the purpose of which is to tell a tale. However, there seems to

be something wrong...

 //. Compiling the story... (This is the STORY/JCL file)

 .

 //IF TRSDOS

 DO STORY (@WHAT,TRSDOS)

 //END

 //IF TRSDOS

 @WHAT

 . I'm sorry - that option is NOT allowed!

 DO STORY/JCL

 //END

 //INCLUDE LINE1/JCL

 //INCLUDE LINE3/JCL

 . Once upon a time, there were TRSDOS users, (Build this as LINE1/JCL)

 //INCLUDE LINE2/JCL

 . who all got LDOS - (This is LINE2/JCL)

 . and they all lived happily ever after, (This is LINE3/JCL)

 . using the LDOS JCL features!

As a footnote - something used in these examples is stated as NOT working in the JCL

section of the manual. This is something that was fixed in version 5.1, but the

documentation was not corrected. Can you find out what it is?

LES INFORMATION

by Les Mikesell

BYTE I/O (the easy way)

There are two different methods of file access available under LDOS, corresponding to

the BASIC sequential or random access modes. The "sequential" type of access is

somewhat slower, but is much simpler and within certain limits, the same routines may

be used for both file and device I/O. As usual, the programmer has more control and

more available functions when working in machine language rather than BASIC. This

column will cover the techniques of sequential I/O, which may also be called "byte"

I/O, since the characters are passed between the calling program a single byte at a

time, and the operating system handles all of the "housekeeping" of buffering sectors

and performing disk access when necessary.

With DE pointing to an open FCB or DCB:

 CALL @GET

will return with a character in register A, and the status for the request in the Z

flag.

 CALL @PUT

will send the character in register A, and return with the status in the Z flag.

The following program will copy one file to another, using the @GET and @PUT calls.

The filenames are passed on the command line.

@ERROR EQU 4409H

@EXIT EQU 402DH

@FSPEC EQU 441CH

@GET EQU 00l3H

@INIT EQU 4420H

@OPEN EQU 4424H

@PUT EQU 001BH

@CLOSE EQU 4428H

;

 ORG 5200H

;HL points to the next entry on the command line

BEGIN LD DE,FCB1 ;point DE at the source FCB

 CALL @FSPEC ;move to FCB

;HL now has moved to second entry

 LD DE,FCB2 ;=>destination FCB

 CALL @FSPEC ;move name

;Set up to OPEN the source file

 LD HL,BUFFER1 ;Pt to buffer

 LD DE,FCB1 ;Pt to fcb

 LD B,0 ;LRL

 CALL @OPEN ;open the file

 JP NZ,IOERR ;Jump on error

;Set up to INIT the destination

 LD HL,BUFFER2 ;Pt to buffer

 LD DE,FCB2 ;pt to fcb

 LD B,0 ;LRL

 CALL @INIT ;init the file

 JP NZ,IOERR ;go if error

;files are open - start transferring data

LOOP1: LD DE,FCB1 ;source fcb

 CALL @GET ;input one character

 JR Z,PUTIT ;write it if read was OK

;got end of file or error if NZ - check error code

 CP 1CH ;End of file?

 JP NZ,IOERR ;go if some other error

;end of source file, so transfer is complete

 LD DE,FCB2 ;=>output fcb

 CALL @CLOSE ;must close to make directory entry

 JP NZ,IOERR ;go if error

 JP @EXIT ;all done, back to LDOS

;write to destination file..

PUTIT: LD DE,FCB2 ;=>output fcb

 CALL @PUT ;write byte (still in A)

 JR Z,LOOP1 ;get the next one

;some error has occurred - report it and quit

IOERR SET 6,A ;short msg/abort

 JP @ERROR

FCB1 DS 32 ;space for file FCB'S & Buffers

BUFFER1 DS 256

FCB2 DS 32

BUFFER2 DS 256

 END BEGIN

This program will accept a devicespec instead of a filespec for the destination of the

copy, IF the output driver always returns with the Z flag set. This is not always true

if the ROM printer driver is used for output, but if the PR/FLT or SPOOLer is active,

the status conventions will be correct.

To load the contents of file into memory, the routine after the OPEN is simply:

 LD HL,START ;first address to store data

 LD DE,FCB ;=>fcb

INPUT CALL @GET ;one byte from file

 JR NZ,DONE ;EOF or error

 LD (HL),A ;store in memory

 INC HL ;space for next byte

 JR INPUT ;get it

DONE CP 1CH ;was it end-of-file?

 JP NZ,@ERROR ;go if some other error

;file is loaded......

Since the status is tested after each input request, the system will always detect the

exact end-of-file so the program does not have to check the FCB contents. (Assumming

that the file was written via @PUT or the EOF offset byte was maintained properly in

the FCB if sector I/O was used.) Of course, in a real application, it would be a good

idea to check that HIGH$ is not overrun. The corresponding routine to write data from

memory to a file would be:

 LD HL,START ;address of 1st byte to write

 LD BC,COUNT ;number of bytes to write

 LD DE,FCB ;=>fcb

OUTPUT LD A,B ;check count of..

 OR C ;remaining bytes

 JR Z,ALL ;go if done (BC=0)

 LD A,(HL) ;load a byte

 INC HL ;point to next one

 DEC BC ;count down remaining

 CALL @PUT ;write it

 JR Z,OUTPUT ;continue if no error

 JP @ERROR ;quit if any error

ALL CALL @CLOSE ;write is complete

If the program will deal only with files, the file positioning routines @POSN, @REW,

and @PEOF may be used. For example, to make the above program append the data to an

existing file, it would only be necessary to CALL @PEOF before the output. Writing to a

file with @PUT will cause the end-of-file to be set at the last byte which was written

when the file is closed, even if writing to an existing file which was previously

larger. The positioning routines will generate an error if used with devices.

If it is necessary to determine whether a file or device is being accessed at runtime,

the first byte of the FCB can be examined after a sucessful OPEN. Bit 7 will be a '1'

if a file is open. Opening a device creates a DCB in the FCB space which is ROUTEd to

the actual device control block (and thus will not have bit 7 set). Either a device or

file may be accessed through the @GET and @PUT calls, but the status flag conventions

at the return from the call are different. During file access, the Z flag will be set

to indicate a good completion, while the NZ condition means the end of file was

encountered or an error occurred. The LDOS output device drivers maintain the

convention of returning with the Z flag set, but this is not a requirement for normal

device operation and is not true for the ROM printer driver. Therefore, it is best to

ignore the status after @PUT to a device:

 LD DE,1FCB ;may be for file or device

 CALL @PUT ;write a character

 JR Z,GOOD ;continue if status is OK

 EX DE,HL ;status is NZ, so check if..

 BIT 7,(HL) ;writing to a file

 EX DE,HL

 JP NZ, @ERROR ;abort if bad file write

GOOD ; output was successful....

Allowing device and file interchangeability is slightly more complicated for input

requests. In addition to the status conventions, there is the problem of determining

when the input is completed, since the device will not give an end-of-file error, and

will not always have a character available. Normally, input that would be desired from

a device would be ASCII text, so some formatting conventions may be used to determine

the end of an input (like a carriage return at the end). The LDOS drivers return with

the Z flag reset (NZ) when a character is returned via @GET from a device. If the Z

flag is set, no character was available. However, the ROM keyboard driver does not use

this convention, so it is necessary to use an OR A to test if a valid character was

returned. Otherwise, it would be necessary to require the use of KI/DVR to depend on

the status returned from the driver. The following routine would input a line of data

(terminated by a carriage return) from either a file or device:

CR EQU 0DH ;carriage return

 LD HL,LINEBUFF ;space to store input

 LD DE,FCB ;of OPEN file or device

INPUT CALL @GET ;get (possible) character

 PUSH AF ;save returned char/status

 LD A,(DE) ;look at FCB

 RLCA ;is bit 7 set?

 JR NC,DEVICE ;go if not

 POP AF ;was file - restore char/status

 JR Z,STORE ;good status, keep character

 CP 1CH ;EOF?

 JP NZ,@ERROR ;abort if disk error

 LD A,CR ;if EOF, put a...

 JR STORE ;carriage return in buffer

DEVICE POP AF ;character / status

 OR A ;anything received?

 JR Z,INPUT ;no, try again

STORE LD (HL),A ;put in buffer

 CP CR ;done?

 JR NZ,INPUT ;no, get next character

DONE ; a complete line has been accepted...

Additional parsing might be added to this routine to discard invalid characters,

process BACKSPACE (X'08'), limit the line size, echo to the video, and perhaps

determine if the BREAK key was pressed. A "general purpose" input routine could be

used to allow a program to accept certain inputs from a file or a device without

needing to know ahead of time which will be used. For example, a file could be used to

store control information used by a program. If the file does not exist, or the

operator requests manual input, the program could simply OPEN *KI and use the same

routines to get the information from the keyboard.

DISK I/O IN ASSEMBLER

by Doug Kennedy

This tale by Doug Kennendy describes his experiences in learning how to do sector disk

I/O by using the LDOS system calls. The program he was writing turned out to be FED -

the LDOS file editor.

In October of 1981, a few weeks after my initiation at Logical Systems (at that time

Galactic Software), Bill Schroeder decided what my first big project was - a file

editor. I knew that data was stored somewhere on disk, and that a disk was divided into

concentric regions called tracks (cylinders), and each track was broken into 256 byte

blocks called sectors, but that was it. I was a game writer, I had no idea how to

access that information at a file level. When in doubt, READ THE MANUAL. That's what I

did, but it didn't make much sense at the time. After writing the display layout &

cursor positioning, the time had come for me to write the file handling routines.

First, I had to know what file to access. The best way I could think of was to prompt

the user for the filespec (File specification). This was accomplished by using the

@DSPLY message in conjunction with the @KEYIN keyboard input routine which inputs a

line of data and transfers it into a buffer specified upon entry. My routine looked

something like this:

FILEIN LD HL,PROMPT ;Display "Filespec:" prompt

 CALL @DSPLY

 LD HL,FILEBUF ;HL => Buffer for input

 LD B,23 ;B => Max # of keys permitted

 CALL @KEYIN ;input filename/ext.password:d

 JP C,@EXIT ;return to LDOS if <BREAK>

After getting the filespec, it was then necessary to find out whether or not it was

valid filespec. This is where @FSPEC comes in. This routine parses through a buffer

(pointed to by HL) and indicates whether or not the contents of the buffer contain a

legal filespec. If the filespec is legal, the Z flag will be set, and a copy of the

filespec (converted to upper case) is placed into a 32 byte region (pointed to by DE)

called a File Control Block (FCB). My routine looked like this:

CHECKFILE LD DE,FCB ;DE --> File Control Block

 CALL @FSPEC ;Check filespec in FILEBUF

 JP NZ,ILLEGAL ;NZ - Display Illegal Filename

One neat feature of LDOS is the capability of default extensions. For example, to

execute a command file such as FORMAT/CMD, one need only type FORMAT instead of

FORMAT/CMD at LDOS Ready. This is because the LDOS command interpreter uses a default

extension of /CMD. By using the @FEXT (Fetch EXTension) routine, a default extension

will be concantenated to the filespec in the FCB. To use the routine, point DE to the

FCB with the filespec contained in it, point HL to the 3 byte default extension (in

upper case) left justified with spaces. After calling the routine, the FCB would

contain the filespec with the default extension unless one already existed or a slash

"/" followed the filespec. If I wished for a default extension of /ASC, my routine

would look like this:

PUTEXT LD HL,DEFEXT ;HL => Default Extension

 LD DE,FCB ;DE => FCB containing filespec

 CALL @FEXT ;Fetch Extension

 RET ;NZ - irrelevant

DEFEXT DB 'ASC' ;Default extension in U/C

Once the complete filespec is contained in the FCB, one can attempt to access that

file. But certain information is necessary for the Operating System to interface with

that file. The logical drive number, diskette location and size of the file are just a

few of the essential things needed to access the file. How does one get this

information? OPEN the file! This is the process in which the system searches a disk's

directory or multiple directories for a filespec and then sets up a 32 byte data region

called an FCB. Of course, this assumes that the file is found (the LDOS Tech section

contains the layout of the FCB). To open a file, simply point DE to the location of

your FCB, which contains the filespec converted to upper case (placed there by @FSPEC).

HL must contain the address of a 256 byte buffer which the system will use to READ or

WRITE from. The B register must contain the Logical Record Length (LRL) of the file.

Since I only performed Sector I/O (256 byte blocks), the LRL = 0. @OPEN, along with the

other file handling routines return with the Z flag set if the operation was

successful. If NZ, then the A register will contain the Error number (See the LDOS

Error Dictionary). The code following the filespec check looks like this:

OPENFILE LD HL,IOBUFFER ;HL => 256 byte buffer

 LD B,0 ;B = 0 = 256

 CALL @OPEN ;Open the file

 JP NZ,OPENERROR ;NZ - Display Error

If @OPEN returns NZ, then the two most likely errors returned are : File Not Found, or

File Access Denied. After successfully opening a file, the FCB no longer contains the

filespec, but information relative to the file.

What if the application wished to create a new file or overwrite an existing file? The

@INIT routine performs the same function as @OPEN except that if the file does not

already exist, it will be created. The Z flag will be set after the @INIT call if

successful. If the C flag is set, a new file was created.

Now that the program has access to the file, something can be done with the it. The

file editor needed to READ records, make modifications, and WRITE changes. It was

decided to make all record positioning using 256 byte records (Sector I/O). This is how

the system performs all of its I/O. When record lengths other than 256 are used, the

system must calculate where each record belongs. For example, a file with LRL = 100

would have its first record (record 0) on logical sector 0, relative byte 0, the second

record on logical sector 0, relative byte 100, the third on logical sector 0, relative

byte 200, the fourth on sector 1 relative byte 43. Since this editor uses sector I/O

(LRL=256), the terms Record and Sector can be used interchangably for these purposes.

FCB+12 and FCB+13 contain the next logical sector number (lsb,msb) to READ/WRITE from.

If FCB+12/13 = 0, then the file has no sectors allocated. FCB+10/11 contain the next

record number to get. Initially these bytes contain 0, indicating the next record to

READ/WRITE is Record 0. The following code will read in the current record:

READCUR LD DE,FCB ;DE => FCB of file

 CALL @READ ;Read the record

 JP NZ,READERROR ;NZ - Disk Read Error

After that @READ, the current record number would be incremented. If @READ returns NZ,

the most probable errors are "Parity Error During Read", or "Record Number out of

Range". Where are the contents of the record? There are two possibilities - 1) a user

defined buffer for LRLs <> 256, or 2) the buffer that was specified when @OPEN was

called. We'll discuss files having LRLs other than 256 in a while. FCB+3/4 contain the

address of the buffer to store the data. These bytes can be manipulated to change the

buffer address, so that one could read a record, add the LRL to the buffer address in

the FCB, stuff back into the FCB, and read the next record, etc. What if one wishes to

read some record in the middle of the file, or the end? @POSN positions the current

sector number in the FC8 to the Record number contained in BC. Here's a simple routine

to read a record:

READREC LD DE,FCB ;DE => FCB of file

 LD BC,(REC) ;set BC = Desired record

 CALL @POSN ;Position to Record

 JP NZ,OUTRANGE ;NZ - Out of Range

 CALL @READ ;Read Record

 RET Z ;Z - successful

 JP RDERROR ;NZ - Display error

The same goes for writing:

WRITEREC LD DE,FCB ;DE => FCB of file

 LD BC,(REC) ;set BC = Desired record

 CALL @POSN ;position to Record

 JP NZ,OUTRANGE ;NZ - Out of Range

 CALL @WRITE ;save changes to disk

 RET Z ;Z - successful

 JP WR ERROR ;NZ - Display error

The only difference between files having LRLs <> 256 and sector I/O, is that the data

to READ/WRITE is placed in a user buffer pointed to by HL. This buffer should be

adequate to hold 1 logical record, and cannot overlap the I/O buffer specified at @OPEN

time otherwise disastrous results may occur. The READ/WRITE routines could be changed

to handle any LRL as such:

READREC LD DE,FCB ;DE => FCB of file

 LD BC,(REC) ;p/u Record number

 LD HL,UBUFF$;HL => User Buffer

 CALL @POSN ;position FCB

 JP NZ,OUTRANGE ;

 CALL @READ ;Read Record

 RET Z ;Return if OK

 JP RDERROR ;else display error

After any modifications have been made, the directory must be updated in order to

reflect the new changes. This is known as closing a file. The following routine will

update a file's directory entry:

CLOSE LD DE,FCB ;DE => FCB of file

 CALL @CLOSE ;Close the file

 JP NZ,ERROR ;Disk I/O Error

 RET ;Good - return

These routines perform all the basic file I/O through the operating system. Next issue

I'll go through some of the more specialized file handling routines.

DK

LET US ASSEMBLE

by Rich Hilliard

In response to numerous requests, the LDOS Quarterly is starting an introductory

assembly language section. The author is rather new to the subject and can still

remember the pain involved so that the approach will be somewhat sympathetic.

(Experienced persons will undoubtably remark that the first syllable of the word

"sympathetic" be stricken.)

Assembly language requires not only careful planning and attention to detail but a

certain psychological frame of mind. It is a discipline (some even say a religion) not

unlike yoga or toilet training, which requires attention to several aspects of the

person as a whole. Therefore, this series will attempt to develop the proper mental

attitude as well as the "How to" approach.

The first aspect of the "expanded" mental outlook is that you must develop a perfectly

monstrous ego which knows no limits whatsoever. Two exercises are recommended to

augment meglomania. 1) Every morning, look in a mirror and repeat ten times: "I am a

POWER in the universe". 2) While typing in code, take to humming Nobody Does It Better.

Other things to work on are :

 1. Take all criticism as an affront to the natural order of things.

 2. Talk of nothing but programming until you have no friends.

 3. Never encourage or assist persons with less knowledge, mock them instead.

 4. Never examine code that is not yours without launching into endless monologues

 which extoll your prowess and defame all others.

 5. Above all be extremely opinionated about everything.

Well, now that the fun is over let's get to work. The first notion to forget is that

assembler is difficult. It isn't, it is merely tedious. For purposes of our discussion,

a Z-80 based computer basically can add, compare and move information. However, it does

this in a very rapid fashion. It is the various combinations of these functions which

make things interesting.

Those three functions may not sound like much but keep in mind that there are only four

basic compounds which encode the DNA molecule. Various groupings of these compounds

form the "blueprint" for all life on this planet from microbes to humans. Therefore, a

few functions, fairly worthless when taken alone, can cause some quite complicated

things to occur.

If that doesn't impress you, then keep in mind that the computer can only count in a

base two numbering system. (This is sometimes referred to as Binary but the more

popular parlance was espoused by Lawrence Welk. E.g. "A one anda two, anda one anda two

etc.) This, of course, is due to the fact that the two digits of Binary ("0" and "1")

are used to bear a direct relationship to the electronic "off" and "on".

Now binary numbers are rather much for beings of higher intellect to deal with (Welk

excepted). This is because humans, being enslaved by their visual cortex, have a rough

time "seeing" a pattern of more than seven objects. Therefore, 01010000 which is one

binary byte (8 bits) is rather rough to memorize or calculate with. It is even more

difficult to readily decode a typical 16 bit address which is extremely prevalent in 8

bit micros. To wit, 1010101101111110 conveys very little information until our monkey

brains break it up into recognizable patterns. Since 8 still violates our pattern

recognition ability, the common custom is to use groups of four binary digits.

1010 1010 1111 1110 is now "visible" but takes up a lot of room so a simplification was

in order. Leaving the history to college professors (who will also insist you know who

Herman Hollerith was), a simple method of notation which uses base 16 numbers is used.

The math involved can be derived from almost any introductory book on assembly language

(it was probably the last thing you understood) so I will not encumber you with it. The

lead number in this base 16 system (called hexadecimal or hex) would be AAFE. This

makes communicating about binary numbers much easier that the proliferation of ones and

zeros. I will refer to hex numbers and give their decimal equivalents so there is no

need to memorize or do base conversions. As you become proficient, hex numbers will

merely become part of your vocabulary through use. The following chart may be handy for

a while, however.

 Decimal Binary Hex

 0 0000 0

 1 0001 1 (pretty easy so far)

 2 0010 2

 3 0011 3

 4 0100 4

 5 0101 5

 6 0110 6

 7 0111 7

 8 1000 8

 9 1001 9 (now the fun begins)

 10 1010 A

 11 1011 B (Since hex is base 16,

 12 1100 C six more "digits" are

 13 1101 D needed than for base 10.

 14 1110 E The letters A-F are

 15 1111 F drafted.)

Half a byte (4 bits) or one hex digit is sometimes referred to as a nibble.

The primary tool of the assembly language programmer is a program called an assembler.

A program is a series of numbers in memory which is interpreted by the Z-80 chip. An

assembler is merely a means of transforming the information from a humanly readable

form into one which makes logical sense to the big Z. But before that happens, the code

must make sense (at least some time) to us. Therefore, a set of symbols pertinent to Z-

80 instructions, but written in human terms, must be learned. These are commonly called

assembler mnemonics.

The mnemonics are entered into a text editing program and then processed into machine

code by the assembler. In the case of many so called "Assemblers" the text editor is

included for programming convenience. EDAS (for EDitor ASsembler) is one of these. The

coding we will do will be done on EDAS. It is possible to make machine language

programs without such a tool, just as it is possible to make a cake by glueing crumbs

together, but who would want to?

There are several components to the editor which we will discuss as they are first

encountered. In EDAS, just as in BASIC, there are various classes of instructions. The

first class we will call editor commands. These are similar to BASIC commands in that

they are something which is to be executed immediatly. In BASIC, these are things like

EDIT, DELETE, LIST, RUN etc. In EDAS, each of these operations is handled by a command.

Some EDAS commands instigate a "mode" of operations. This is not a foreign concept to

the BASIC programmer at all. Take the EDIT command from BASIC. Typing EDIT (line #)

will enter the "edit mode" for that given line. The programmer is said to be in "edit"

until the mode is voluntarily left. EDAS has several modes which work like that. A

minor difference, is in BASIC the "add text" mode can be entered merely by typing line

numbers. In EDAS, you must enter the "I"nsert mode which works in similar fashion to

BASIC's AUTO mode.

The second class is instructions which comprise the actual assembly code. These are

also divided into two groups, the mnemonics (often called op-codes) which will be

rendered into machine language, and the instructions to the assembler which are called

psuedo-ops. This latter group does not become part of the finished machine code but

rather instructs the assembler about such things as where the program is to load,

defines data, reserves space etc.

Do not dwell too much on this cursory explanation. You programmed in BASIC just fine

without knowing whether you were typing a statement, a function, or a command. I only

included this information to possibly clarify some buzz words you might have heard.

Now let's try a simple program. Remember the old saw:

10 PRINT "HELLO, I AM YOUR TRS-80 COMPUTER"

It probably was the first line of code that you ever wrote. (sniff, ah the innocence of

$5000 ago). On the TRS-80 I/III series, there are several ways in which this can be

done in assembly language. For now, we will take the easiest path. Turn to the

Technical Section of the LDOS Manual, blow off the cobwebs, and find the page (the

numbers are different in various versions) which explains the system entry point @DSPLY

under the heading Video and Printer I/O routines. A system entry point is a place

where, by establishing certain conditions, the programmer can do the equivalent of GOTO

or GOSUB or IF.. THEN, to accomplish a job.

There is much debate on using system entry points. Some say that a novice should not

use these things because the knowledge of how they are done is never learned. Really? I

wonder if these same people built their first automobile. OK, granted someday you might

have to write one of these routines yourself. Fine, toil with it then. Not to use what

is provided NOW is a waste of your time and the computer's memory. It also has the

added bonus of having to change relatively little in a program for other versions of

the same operating system. We, therefore, will use them but also discuss other ways.

The system entry point for @DSPLY says that it will display a message line terminated

by a carriage return or end of text marker. The latter is equivalent to ending a BASIC

PRINT command with a semi-colon after it.

Enter EDAS by typing its name at LDOS Ready. To enter the Insert mode type I and note

the numbers 00100 at the left side of the screen. You are now in the equivalent of

BASIC's AUTO command. There are some differences. Just as in AUTO you may use a

starting number and specify the increment. (I100,10 is the default I1,1 would start at

00001 then 00002 etc.) The difference is that INSERT does not allow you to overwrite a

line. Line numbers in assembly are useless for execution of the code and serve merely

to organize the source text. NEVER refer to line numbers for branching.

Now tab over one zone by typing the right arrow. The source code is divided into zones

and the zone immediately after the line numbers are RESERVED for labels, not

instructions. Type in the word "ORG" and tab again.

ORG is one of the psuedo-ops referred to earlier. It tells the assembler where the

program will load into memory. The assembler then works on all instructions using the

ORG parameter as a relative starting point. LDOS requires memory up to and including

address 20,991 (X'51FF' [X'' means a hex number with the value contained within the

single quotes another way to indicate a hex number is by the suffix "H" as in 5lFFH])

and from HIGH$ up. HIGH$ will start at address 65,535 (X'FFFF') and progress down as

you add various LDOS advanced features, so depending on how your system is configured

it will be at various places. The MEMORY command can tell you where, but we will not be

writing anything long enough to violate it for now. Based on this discussion, the

lowest address we may ORG at is 20,992 (X'5200').

Addresses (or numbers) in EDAS may be decimal, hex (ending with H) or binary (ending

with B)(in case WELK uses EDAS). It should be noted that hex addresses which start with

a letter (A-F) MUST be preceeded by a zero so that the assembler can tell them apart

from labels. This is covenient because it is not necessary to convert between number

systems. Merely enter a number in hex if you have a hex number or in decimal if you

don't. The parameter to ORG may be at any old place your heart desires between the low

and HIGH$. The only requirement is that your eventual program length will not violate

HIGH$ (this is illegal in some states). Since lots of room is good news let's go as low

as possible and choose X'5200'. Press <ENTER> and be sure your code looks like this:

 00100 ORG 5200H

 00110

@DSPLY requires that the register pair HL be "pointed" to the first byte of the

message. Registers are temporary storage areas within the Z-80 that are used to

manipulate the information fetched from memory. How it is manipulated is up to the

programmer. The regular registers in the Z-80 are named A,F,B,C,H,L,D, AND E. They each

may hold a byte of information at a time. Three sets may be paired for 16 bits of

information. These are the BC, HL, and DE pairs. To point a register pair at something

simply means that the address of the "thing" is contained in a register pair.

Additional registers in the Z-80 which we will get into in later issues, are the I, R,

IX, IY, SP, PC, and all the registers of the previous paragraph are duplicated in what

is known as the "prime" set.

@DSPLY expects the address of the message to be in the HL register pair. The most

common way to get information between memory and registers is with a LOAD instruction

(mnemonic LD). EDAS has the ability to calculate addresses for us. We do this by

labeling the address with an arbitrary name and then treat the label as if it were

something real! This makes life very pleasant. Let's call our message "HELLO". To load

the address of HELLO in HL type:

 00110 LD HL,HELLO

The comma is best read as "with", so we said LOAD HL with HELLO. Now HL is pointed to

the message (I know that HELLO doesn't exist yet, so quit complaining.) This means that

all of our entry requirements are met and we can vector to @DSPLY. Since we still wish

to be in charge after the message prints, we will CALL @DSPLY (GOSUB). In the technical

section of the manual observe the numbers after the word vector. Four digits eh? Pretty

suspicious. In fact, this is the address where this routine is entered. Between the <>

are the Model I addresses and between the [] are the Model III addresses (@DSPLY is the

same for both). Whereas (I'm not a lawyer, really, other people do use that word.) in

BASIC a GOSUB takes a line number, in assembler a CALL takes an Address. Your line

00120 is a CALL 4467H (17511).

The message called HELLO must be part of the program but should not be in a position

where the message will execute. If we stuck it next, the Z-80 will try to run the

collection of bytes which form the message. Therefore, the equivalent of GOTO can be

used to jump around the message. Unlike BASIC, however, no time is lost by having the

message at the end of a program. This also means a saving of some code since there is

then no need to vector around the message. All of this is why it is customary to place

most video output at the end of a program (or between unrelated parts).

We MUST however, return control of the Z-80 back to LDOS. (At least if you want to do

more than print one lousy hello line). A few pages earlier in the technical section

reveals a system entry point called @EXIT. Miracle of miracles, this doesn't even have

any entry conditions. @EXIT cleans up after us and returns to the LDOS Ready prompt.

This, if you will, is kind of a CMD"S" from BASIC. We do not want to CALL this since we

are now giving up the ship. We need the equivalent of GOTO which is JUMP (mnemonic JP).

The vector for both models is X'402D' (16429). Line 00130 reads "JP 402DH".

Since the program is over, we might as well compose a message. For this we need the

psuedo-op DB (or DEFB) which stands for Define Byte. In EDAS, this means we get to

string together up to 128 bytes. The assembler upon seeing a DB, merely places the

subsequent series of bytes into memory. Anything contained within single quotes (')

means that the characters are translated to their hex values of the ASCII number so

that we humans need not bother with such demeaning and odious and vexing and more than

likely error producing trivia. Line 00140 then reads like this:

00140 HELLO DB 1CH,1FH,'HELLO I AM YOUR TRS-80 COMPUTER',0DH

Note that the different portions of the message are separated by commas. Looking in the

Video Control Codes section or your TRS-80 manual provides an explanation of the two

single byte codes preceeding the message. PRINT CHR$(28) moves the cursor to the upper

left corner of the screen. Remember, we are doing the EQUIVALENT of PRINT. 28 is, of

course, X'1C'. CHR$(31) (X'1F') means clear from cursor to lower right corner. For

those of you still awake this is a CLS. The last byte of the message is X'0D' or

decimal 13. This you will recall is required by @DSPLY to signal the routine that the

printing is over for now.

Finally, we need to tell the assembler both that the source is over and what address to

begin execution at. This is handled by the END psuedo-op. In most cases, the program

begins execution at the first byte. This means that our execution address (sometimes

called "transfer" address) will be the same as the ORG address.

To LIST the program use the "P" command. The "P" command works a little differently

than BASIC's LIST. Typing P will print from the "current line" and 13 more lines below

it. P line number, will print one line specified by number. P line number comma line

number, will print starting at the first and ending at the second. A "#" means TOP of

TEXT and an "0" means bottom. P#,0", therefore, is the same as typing LIST in BASIC.

The program should look like this:

00100 ORG 5200H ;comments are placed

00110 LD HL,HELLO ;behind semi-colons

00120 CALL 4467H ;to clarify things

00130 JP 402DH ;because lot of this

00140 HELLO DB 1CH,1FH,'HELLO I AM YOUR TRS-80 COMPUTER',0DH

00150 END 5200H ;tends to look the same

Press <BREAK> to exit the insert mode. Now let us assemble. If you ever need to look at

the code again, the source file must be saved. This is done with the W (for write)

command. So as not to overtax, call the file PRINT. Type "W print" and EDAS will save

the Source Code in the file PRINT/ASM. If you supply your own extension the default

will not append to the filename.

Before proceeding, it is a good idea to assemble without creating the object code just

to see if all is well. To do this type "A -WE" which means assemble, and the dash W E

means wait on error. If there is an error don't call me, you messed up. The assembler

will pause on the error line and display an appropriate error message. Press any key to

proceed after noting the line number of the error or press <BREAK> to get out of the

assemble mode. You may enter the edit mode by typing "E" followed by the line number

and a carriage return (ENTER). You will be pleased to note that the edit commands are

the same as they are in Level II BASIC. If there is no error, the display will continue

and the message 00000 errors will appear. For those of you who have errors be sure to

save your source before leaving EDAS and after correction.

To assemble for real, add a filespec as in : "A PRINT-LP-WS". If you do not have a

printer on line leave out the "-LP". These dash something or others are called switches

because by specifying them you turn an option on or off. -LP means send the assembly to

the line printer and -WS means assemble with a symbol table (which for this program is

not real lengthy). The Printed Output should look like this:

5200 00100 ORG 5200H

5200 210952 00110 LD HL,HELLO

5203 CD6744 00120 CALL 4467H

5206 C32D40 00130 JP 402DH

5209 1C 00140 HELLO DB 1CH,1FH,'HELLO, I AM ETC.

 1F 48 45 4C 4C 4F 2C 20

 49 20 41 40 20 59 4F 55

 52 20 54 52 53 2D 38 30

 20 43 4F 4D 50 55 54 45

 52 0D

5200 00150 END 5200H

The column at the left contains the address for the bytes in the next column. At

X'5200' will be an X'21'. At X'520l' will be X'09' and at X'5202' will be the byte

X'52' etc. The second column is the object code which will be saved in load module

format (/CMD) to the file PRINT/CMD. We will have more to say on object code next time

when we use the LDOS system debugger to "see" the execution of this program.

Exit EDAS by giving the B command, and at LDOS Ready type "PRINT". If all went well

your program should execute.

Next time, besides learning DEBUG, we shall explore direct to video memory

implementations of a ripple and bubble sort both in basic and in assembly. We will call

this segment "Sorts Illustrated" (groan).

Also we will begin moving a little faster because much of the groundwork has been laid.

If you wish to explore certain subjects within this series, the author is definitely

open to suggestion because he is not yet totally proficient in Assembly. After he gets

good, he will, of course, send you a nasty gram for your impertenance.

