

Page 1

THE LDOS QUARTERLY July 1983 Volume 2, Number 3

Table of Contents

INTRODUCTION FROM LSI:

 ARTICLE SUBMISSION POLICY .. Page 2
 VIEW FROM THE BOTTOM FLOOR ... Page 3
 NEW PRODUCT ANNOUNCEMENTS .. Page 7

FROM OUR USERS:

 Running 8-Inch Drives on the Model III under LDOS Page 8
 Active Variable Dump for LBASIC .. Page 15
 My BASIC Answer - using TBA .. Page 17
 An ASCII File Listing Utility for The BASIC Answer Page 19
 EASY VISICALC - using KSM with VisiCalc Page 23
 Profile III+ reviewed - use with LDOS and Hard Disk Page 25
 Color Comes to the TRS-80 - color graphics on Models 1 and 3 Page 28

REGULAR USER COLUMNS:

 ... er ... Earle Robinson at large ... Page 32
 * PARITY = ODD * Tim Daneliuk .. Page 35
 'C' What's Happening - Earl Terwilliger Page 39

FROM THE LDOS SUPPORT STAFF:

 ITEMS OF GENERAL INTEREST .. Page 45
 Update and clarification, *very important FORMAT patch*,
 and misc. optional patches

 LET US ASSEMBLE - Rich learns even more assembler Page 46

 LDOS: HOW IT WORKS - Non-Radio Shack disk drives Page 55
 Creating system disks, booting double-sided discussed
 LES INFORMATION - by Les Mikesell .. Page 56
 Using Byte I/O in assembler under 6.0

 THE JCL CORNER - by Chuck .. Page 58

ABOUT OUR COVER: LSI has been experimenting with a new photomagnetic emulsion transfer
process. The cover is a graphic representation of a 5.1.3 master diskette. This is
similar to the process by which small plastic records are printed and inserted into
magazines. If anyone is able to successfully read this cover, please let us know so that
we can use the information to refine the process.

Copyright (C) 1983 by Logical Systems, Incorporated
8970 N. 55th Street P.O. Box 23956

Milwaukee, Wisconsin 53223
Main switchboard: (414) 355-5454

LDOS Hotline: (414) 355-4463

Page 2

The LDOS Quarterly policy on the submission and payment for articles is as follows:

Articles sent for consideration must be submitted in the following format:

1. A cover letter, summarizing the content and intent of the article.
2. A printed hardcopy (lineprinted or typewritten) of the article.

A diskette with--

3. A 'plain vanilla' ASCII text file containing the article. This file should be
formatted as 87 characters per line, and 62 lines per page, with no headers or
footers. Do NOT send SuperScripsit or Newscript files. Also, please do not
embed print effects.

4. If the article involves assembly language programs, include both the source
code, and the object code.

5. Any other necessary files or patches should also be supplied in machine
readable form.

Please do not send in printed text without a diskette, as it will NOT be considered for
publication. Payment will be made in the form of a LSI product, or $49 per published
page in the current Quarterly format. The size of the article will determine the value
of the LSI product available as payment.

Please include your name, address, telephone number and LDOS serial number with your
submission, firmly attached to your hardcopy printout, and affixed to the diskette you
submit.

LSI is extremely interested in seeing submissions from our users, and is open to
suggestions on any ideas for the Quarterly.

Submissions should be sent to:

The LDOS Quarterly Editor
c/o Logical Systems, Inc.

8970 N. 55th Street
P.O. Box 23956

Milwaukee, Wisconsin 53223

Trademark Acknowledgements:

LDOS and smal-LDOS are registered trademarks of Logical Systems, Inc.
TRS-80 and TRSDOS are registered trademarks of Radio Shack/Tandy Corporation.
MAX-80 is a registered trademark of LOBO Systems, Inc.
CP/M is a registered trademark of Digital Research, Inc.

The LDOS Quarterly is copyrighted in its entirety. No material contained herein may be
duplicated for commercial purposes without the express written consent of Logical
Systems, Inc. and the article's author.

Page 3

V I E W F R 0 M T H E B 0 T T 0 M F L 0 0 R
===

by Bill Schroeder

It's Quarterly time again, a little early because we want to have this issue ready to
give out at our open house. In any case, here we go...

We have had a great response to the new column by Rich Hilliard (Let Us Assemble, Vol 2,
No. 2). His writing style and method of imparting tutorial information has been very
well received. For this reason, we intend this column to continue as a regular long term
feature of the LDOS QUARTERLY. The second part of this ongoing series is to be found in
this issue. I'm sure that you will find it very informative and fun to read. I've seen
the outlines for many of the upcoming issues and feel that this column will grow to have
a large following.

We have also started a new column in this issue that will deal with assembly interfacing
to LDOS 6.0 type systems. This column will examine the use of the SVC system present in
the 6.0 environment and give examples and in-depth discussions of opsys functions. This
technically informative column will be written by our own Les Mikesell. I am sure this
new feature will also develop an avid clan of followers.

Speaking of large followings, I am often asked "HOW MANY LDOSes ARE OUT THERE??". Of
course, the exact number is considered confidential, and is known to only a select few.
But I will say that there are well over 40,000 legitimate (registered) LDOS users. There
are, of course, untold thousands of pirate users. Trying to get any type of service from
LSI if you are not a properly registered owner is a very interesting experience, which
usually ends with the pirate's support coming directly from our attorney.

We have a new person entrusted with the day to day operation of our customer service
department. This person is JOE KYLE-DIPIETROPAOLO (Try that fast, ten times). If you
have not dealt with Joe as of yet, you will be pleasantly surprised when the time comes,
as he is proving to be a very competent individual.

Let me mention just a couple of other things about customer service. First, the TRSDOS
6.0 product that is delivered with the Radio Shack Model 4 computer is supported directly
by Radio Shack, NOT LSI.

We receive many calls daily requesting help and information on TRSDOS 6.0, the BASIC
provided with the machine, software running on the Model 4, and the hardware itself. In
most cases we can not be of much help, due to contractual obligations and company
policies. HOWEVER, our customer service people will help with Model 4 related questions
and problems under the following conditions. You must first have attempted to get the
problem resolved or question answered through the normal channels of the Radio Shack
Customer Service program. The Radio Shack Customer Service program is an excellent
program, and is a lot better than most people give it credit. Give it a chance to work.

We get a lot of calls from Model 4 users that have not even checked with their Radio
Shack store, or with Customer Service in Fort Worth, yet they insist that Radio Shack
can't, won't or are unable to help them. This could not be further from the truth. In
the vast majority of cases, the normal service channels through Radio Shack will provide
complete satisfaction, given the chance.

If you make an effort to solve the problem through Radio Shack, but are unable to get
satisfaction, then by all means contact our customer service department, and we will
help. We do insist on one thing, and that is that you know who (individuals' names and
departments) were unable to assist you and their reason for why they were unable to do
so.

In some cases, it is possible that the information you need has simply not been provided
to that individual, or that LSI has inadvertently not provided the needed information to

Page 4

Radio Shack at all. If we know exactly where information is lacking, and who is
responsible, the problem can be addressed and corrected.

Technical information about the Model 4 hardware and the TRSDOS 6.0 system should be
available very shortly. This should clarify many of the technical questions. This
publication is very detailed, and jammed with complete facts, examples and electronic
information. This publication is called the MODEL 4 TECHNICAL REFERENCE GUIDE, and will
be available as Radio Shack part number 26-2110 at a very nominal cost. So hold those
technical questions a few weeks, as the answers should be in that publication.

Now another Customer Service point. As LSI grows, we are confronted with ever changing
condition and must adjust policies accordingly. To avoid frequent interruptions of our
programming staff, a new policy has been set in motion at LSI. If any customer service
person is unable to provide an answer to a technical question, he will not run around the
building trying to locate our resident expert in that particular area. Instead, he will
take down complete details on a special form, and tell you when he expects to have a
complete and accurate answer to your query.

To provide those answers, we now have general customer service meetings twice a week
(Mondays and Thursdays). At one of these meetings, your query will be presented.
Discussions among our staff will result in the best possible answer or solution. We wil1
try to provide the best of service to you in this manner. So far, the results have been
excellent. We feel that we are now better serving our users. These meetings have proved
of great value in "cross-educating" ourselves here at LSI. The next time the same
question arises, all of our customer service personnel will have the correct response
without needing to consult with others.

Now on to a different matter entirely. LSI has always been against such concepts as
"SOFTWARE LIBRARIES", and User's Groups that exist mainly to share copyrighted software.
We have found, however, that the small percentage of pirates and thieves among our
customers is costing LSI an unacceptable amount of revenue. As a systems software
company, it would be very easy for us to develop many diverse schemes to make it very
difficult to copy or backup our products. Up until now, we have resisted this method of
protecting our work, and preferred to rely on the integrity of our customers, and to
provide excel lent support and value with our products. We had thought that if the user
really got a good product, at a fair price, from a company that would stand behind the
product, that we would be subject to very little abuse by pirate activities. NOT SO!!!

We have reconsidered our position on behalf of our honest, loyal customers and have found
that without some kind of protection, it is THE HONEST CUSTOMER who is being hurt by
pirate activities. Our customer service lines are often ALL busy, and customers are told
they will have to call back. For this we apologize. However, a sizable portion of our
customer service department's time is being taken up by persons that have stolen our
products. We have several ways to determine when we are servicing, or have serviced an
illegal copy of our product. For obvious reasons, I would rather not go into how we are
able to flush out these pirate products.

The result to our legitimate users is that the department that is set up to assist them
also must deal with this pirate problem. The honest customer suffers the loss of the
availability of this technician. The legal, honest customer is suffering. There is also
the lost revenue to LSI which will affect present and future pricing on products. Again
the more illegal duplication, the more the honest users suffer.

It is with this in mind that LSI will begin to provide certain new items to run with
LDOS/TRSDOS 6.0 on special "Limited Backup Disks". NOTE: This will NOT apply to 5.1
products, or LDOS itself. The new 6.0 products will generally be supplied with three
backups allowed from the original master. Since these files cannot be COPYed
individually, it will not be possible for a single drive user to move these from the
original, non-system master disk to a system disk. Any limited backup disk that fails
will be replaced at NO CHARGE upon receipt of the unusable copy by LSI, providing that
the allowed number of backups have NOT already been made.

Page 5

This method may seem very simple, but we feel that it is the easiest way we could give
ourselves at least a minimum amount of protection without severely inconveniencing the
end user. WARNING: This protection system is NOT as simple as it sounds. It will seem
rather easy for a pirate to remove or by-pass this protection, but this is NOT SO. After
any tampering with the protection system, the functions of the program WILL BE ALTERED.
If anyone offers you a normally protected LSI product for free or almost free, BEWARE -
YOU ARE ACQUIRING A TIME BOMB. Unrecoverable damage to your data will usually occur if
you use a pirated copy of an LSI protected product.

OK Now how is the our customer going to know when a product is provided in a
protected manner? Very simple. All products that are provided in a protected form will
be identified as "protected" in the OFFICIAL LSI CATALOG. They will also have a little
difference in their TITLES. All protected LSI products will contain the prefix "LS-" or
just "LS". So our "FED-III' package when provided on a protected disk would become "LS-
FED II".

DO NOT PURCHASE AN "LS" TYPE PRODUCT IF YOU HAVE ONLY ONE DISK DRIVE!!

We hope this new program will address some of the problems created by the illegal piracy
of LSI software. We also hope that our customers can understand the benefit they receive
from this new program, and will be willing to cooperate. Lower pricing and easier access
to customer service should more than offset any concern about having a limited number of
backups.

Someday, strong legislation that will treat software pirates just like "burglars",
"muggers", and other criminals who would steal another's property, may stop or slow this
cancer in our industry. But until that time, it is up to each to protect his own, like
getting a guard dog to protect your property. We sincerely hope that legislators will
provide adequate protection for our property in the future, and we will be able to
forever get rid of our guard dog.

At this point I would like to restate LSI policy regarding this publication. We do not
see ourselves as journalists. The articles in this publication will come from two major
types of sources.

First, there is the case where the author is an LSI employee. In this situation, LSI
views and policies are expressed in the writing and the material is watched as closely as
possible to confirm that it is in keeping with LSI standards and policies.

Now, the other source of material for this publication is "outside authorship". We do
not want to become censors or editors that do not allow proper freedoms to these authors.
Their material is NOT edited, rewritten, or altered in any way by LSI (other than
technical or typographical errors, or the addition of "editor's notes"). It is therefore
important for you to note that some articles appearing here may contain material that LSI
does not support or agree with. We feel very strongly that we should present the
material as it is written, and we are sure you feel the same way. Therefore, we will not
assume responsibility for the opinions or beliefs of our outside authors. We will,
however, try to keep the technical content of articles correct and accurate regardless of
the author.

We are looking to expand our product line here at LSI. To this end, we are constantly
seeking program submissions from our users. We are open to almost any type of software
in any language. We are looking for quality products from our users to publish and add
to our line. The owners of these products will be very fairly compensated for their
work. We are open to discussion concerning almost any type of compensation plan that is
workable. There can be many thousands of dollars made by authors who publish through
LSI. We will even consider accepting NON-EXCLUSIVE rights to a product rather than none
at all.

Then, there are those people with great product ideas, but alas, are not programmers Well
OK, LSI has an offer for you also. If any outside individual has a great idea for a

Page 6

product and is willing to work with LSI to have his idea become a reality, LSI will
listen. Call me directly. We will discuss your idea (and it will remain YOUR IDEA). If
it has promise, I will ask you to write it up in detail. We can then work out a royalty
agreement should we implement your concepts and ideas. You don't HAVE to be a programmer
to make some money from the software industry.

We are interested in establishing a Southern Wisconsin LSI products USERS GROUP. LSI
would assist with getting it started, and probably be willing to provide technical
advisors, guest speakers and a meeting facility to this group, as well as our official
backing. So, if you are interested, and live within a 100 mile radius (about) of
Milwaukee, let me or Chuck know. Let's get one started!!

We have now taken on some of the more popular products from POWERSOFT. This of course
includes the ever popular SUPER UTILITY PLUS by Kim Watt. For complete details on these
new products in the LSI line, check out our official LSI JULY '83 catalog (FREE ON
REQUEST).

Our new catalog also contains several price changes and new product entries, so make sure
to get a copy soon and browse.

LSI has been forced to drop from our product line all items provided by SNAPPWARE, Inc.
This action is due to the inability of SNAPPWARE to provide LSI with adequate quantities
of product to satisfy our customers. The SNAPPWARE products are still considered by LSI
to be excellent products and good values. These products are still available directly
through SNAPPWARE, but will no longer be available through LSI. Thank you for your
understanding in this matter.

We get dozens of calls each day requesting some type of extended support agreement for
the LSI 6.0 type system (Model 4 at present). We are working up a method to accomplish
this for those who would like it. I will probably announce our finalized plans in the
next issue of the Quarterly.

This issue contains a VERY IMPORTANT PATCH to the 5.1.3 FORMAT utility. You will find
this small but important patch later in this issue. As usual, you may install the patch
yourself , or send LSI your disk with the normal upgrade fee, and we will send you back a
fresh cut from our master. The new 5.1.3 masters are dated 06/19/83. If it's been
awhile since you've had your master in for a "DUSTING and CLEANING", then please send
that "critter" in and let us make it just like new.

Remember "smal-LDOS"? Well, it' s now an official member of the LDOS family. The sma1-
LDOS product is now available for general purchase through LSI and our dealers, at a
suggested retai1 price of JUST $59. That's right, for those who only need the reduced
environment that smal-LDOS provides, this is the affordable alternative to the ful1 LDOS
system. Smal-LDOS is directly compatible with full LDOS in both Model 1 and Model 3
versions. Smal-LDOS contains very few "bells and whistles", unlike its BIG brother, but
is a fully functional operating system for just $59. So, do LSI a favor and let the
world know that a version of the most popular TRS-80 DOS is now available for just $59.

Our competition (Newdos, Dosplus, Multidos) offer fine products, but all at close to $100
retail (or more). I feel that the full LDOS at $129 is a super value when you think of
what you are getting for your money. However, there are many would-be LDOS users who
have little or no need for a majority of the "fancy" features offered by our larger
system. The smal-LDOS system is the answer for those users. For $59 they get full LDOS
5.1 compatibility with the reliability and quality of support and design that have made
LDOS "THE" DOS alternative. LSI even includes a $30 coupon with every smal-LDOS, which
is redeemable at any time toward the purchase of the full LDOS system (this would make
the NET cost of smal-LDOS just $29).

In the last issue I announced the expected release of Wordstar on LDOS 5.1 as being in
July. As of the day I am writing this article, it appears that two small bugs have been

Page 7

detected. These have been reported to Micro-Pro, and they promise their prompt attention
to the correction of these problems. We are now at their mercy.

LSI wi11 not release a product that contains a known bug. We see no reason that the
release of Wordstar will not occur as scheduled, but at this point, that is in the hands
of Micro-Pro. So, if there is a slight delay, please be patient. As with any other
order you have placed with LSI, any Wordstar order may be canceled, and your money
cheerfully refunded at any time prior to shipment of the product. Thank you for your
understanding in this matter.

One last thing should be said which is often overlooked by the management of many
companies. That is to express my appreciation for the loyal support and backing of our
ten s of thousands of customers, without whom LSI is nothing. We like what we are doing,
and try to do it in the best way we can. You, our customers, have supported LSI and we
will try not to let you down. THANKS!

I wish you and your families (and computer) a safe and pleasant summer.

NEW PRODUCT ANNOUNCEMENTS

The following new products are in the July LSI catalog, but were not mentioned in the
last LDOS Quarterly.

smal-LDOS 5.1

smal-LDOS 5.1 is a abbreviated version of the LDOS 5.1 operating system, available for
the Radio Shack Models 1 and 3. This is a complete operating system, containing all of
the most needed functions from the full LDOS 5.1, but at a much lower price. smal-LDOS is
ideal for the user who wants the quality of LDOS, but cannot afford the complete system.
Please check out the July LSI catalog to see exactly what is and is not included in the
new smal-LDOS.

FED II

FED II is an enhanced version of the FED File Editor. This new version includes mapping
of machine language files, instruction disassembly, advanced search and reference
functions, and much, much, more! Sorry, at this low price there will be no upgrades from
the original FED.

The LSI Help System

The LSI Help System is an advanced utility that allows the search and display of the
information that YOU need in the daily use of your computer system. Help for LDOS and
LBASIC is included with the base Help Package. Technical Help is also available, and
with the HELPGEN utility you can even produce your own Help files. In many cases, you
can access the Help system from within your own programs.

Anthology One and Anthology Disk One

Here it is! Finally, you can get a complete bound set of the LDOS Quarterly, Volume One.
Many of these issues have been unavailable for some time, and this is the only place to
get them. A veritable wealth of information is presented here, with INDEX! The
Anthology Disk contains many of the computer programs from Volume One of the LDOS
Quarterly, and that means no typing is required.

MODEM-80

LSI is now carrying the famous Modem-80 communications package. This system allows for
automatic file transfer between similarly-equipped machines, and an excellent terminal

Page 8

uti1ity. Translation tables are used for character re-definition, and best of all, it's
LDOS compatible. A special MAX-80 version is also available.

Powersoft Products

LSI is now a distributor for many of your favorite Powersoft products. These include
Super Utility Plus version 3.0, and both SU+ reference books; Inside SU+ and the SU+ Tech
Manual. We will also be carrying the Toolbox for LDOS, and the Master Mechanic Set for
LDOS, both of which are very useful LDOS utility sets.

In terms of new software from other vendors, the Utility Disk from MicroConsultants is a
collection of seven utilities and filters designed to enhance your utilization of LDOS.
Briefly, here is what each program does:

KSTAT/CMD - When executed at 'LDOS Ready' it gives you a map of the current KSM/FLT
or KSMPLUS/FLT key assignments

PSTAT/CMD - When executed at 'LDOS Ready' it displays the current settings of
PR/FLT; you may optionally change individual parameters without affecting
the others. Use of PSTAT will not affect active filtering of *PR or use
additional high memory.

RSTAT/CMD - When executed at 'LDOS Ready' it displays the current settings of the
RS232/DVR; you may optionally change individual parameters without
affecting the others. Unlike reuse of the RS232/DVR, RSTAT will not
affect active filtering of the serial line or use additional high memory.

PRINT/CMD - When executed at 'LDOS Ready' it allows you to send a line of text
directly to the printer (for titles, etc.). Use of embedded line feeds
and form feeds is also supported.

SETRS232/FLT - This filter, when applied to the serial communications line, allows you
to change the basic RS-232 parameters from within an application pro gram
(i.e. now you can change baud rate, word 1ength, stop bits or parity
while in LCOMM).

EDITCMD/FLT - This filter, when applied to *KI, allows you to edit the last command
line entered at 'LDOS Ready'; the edited command line may then be
executed. This means that when you type:
FIXTER *PR PR/FLT(FFHARD,L=56,XLATE=X'7FlD',MARGIN=8)
a few keystrokes will change FIXTER to FILTER.

PRLCOMM/FLT - This filter, when applied to *PR, will strip all control codes (except
LF, CR, FF) going to the printer while in LCOMM. It will prevent your
printer from going crazy when you are dumping text to it straight off the
communications line.

All programs will work under Model I, Model III OR MAX-80 LDOS. On the Model I, only the
Radio Shack E/I is supported. All programs are provided with documentation and commented
assembler source code.

The Utility Disk is available for $25 from MicroConsultants - Central, P.O. Box 55023,
Madison, WI 53705

RUNNING 8-INCH DRIVES ON THE MODEL III UNDER LDOS

by Peter S. Simon

How would you like to see 606.OK in response to the FREE command? I'm getting this now
on my Model III, and when I upgrade my system to a faster clock rate, I'll be able to
access more than 1 Megabyte on each of drives :2 and :3! How do I do it? I'm running 8-
inch drives, of course. If you have the right hardware, this article will show you how
to tie it into the LDOS operating system for high performance 8-inch operation.

Page 9

Before discussing the driver routines, let's review the hardware requirements.
Naturally , you need to have 8-inch drives. Mine are Tandon TM848-2 thinline drives.
These differ from the "classical" 8-inch drive in that there is no head-load solenoid and
the disks are not turning constantly. The heads are loaded whenever the drive door is
closed. Also, the Tandons have a DC motor which turns on for a few seconds whenever the
drive is selected. In effect, the drive acts just like a normal 5-inch drive, except for
capacity. I believe that the driver routine should work for the old style drives too,
provided that the disk controller motor on logic is used.

The only other requirement is a floppy disk controller capable of 8-inch operation. I
have a Micro Mainframe FDC-3C controller installed in my system, which has performed
flawlessly since its initial installation. The controller supports both 5-inch and 8-
inch drives. The user selects which type by writing to port X'E4' with bit 4 set or
reset for 8-inch or 5-inch operation, respectively. I understand that most controllers
that support 8-inch drives use the same scheme, so my routines should work for them also.

Program Listing 1 contains Config8, the relocatable 8-inch disk driver routine. By
patching the existing system driver routine, calling it, and then restoring it before
exiting, I'm able to keep my driver routine quite small. The single density version
occupies only 67 bytes of high memory. It consists of 3 parts: the new interrupt
handler, the relocator, and the actual relocatable driver. The function of each of these
sections of code is described in the remainder of the article.

The default system disk interrupt handler resides at X'46F9'. Its function is to disable
further disk interrupts and discard the current return address off the stack.
Unfortunately, when it disables disk interrupts by writing X'00' to port X'E4', it also
resets the floppy disk controller to the 5-inch mode of operation. Normally this would
not be a problem, since an interrupt is not generated until the pending operation is
completed. However, the system has several built in retries in case of a disk error, and
these retries are guaranteed to fail on an 8-inch disk if the interrupt handler is not
modified.

Fortunately, there are a couple of spare bytes between the end of the interrupt handler
and the beginning of the Drive Code Tables (DCT's) which allow room for a small patch. I
change the interrupt handler to load an immediate value (either X'00' or X'10') in A and
then output this to the port. The relocatable driver will modify the code here to supply
the correct output for 8-inch or 5-inch drives. Because the relocator code will modify a
byte in the interrupt handler, it is imperative that my interrupt handler (not the
system's) be resident whenever the 8-inch driver routine is used. You may wish to SYSGEN
the 8-inch driver in high memory to make it a permanent part of your configuration upon
boot-up. Realize that when you re-boot the system, the original system interrupt handler
routine will overwrite my interrupt handler in memory. There are several solutions to
this problem. One thing you can do is patch SYS0/SYS (as I have done) so that my routine
becomes the system routine. Perhaps a less drastic measure is to create a small program
which just writes the new interrupt handler into memory, then returns to LDOS READY.
This program can then be AUTO'ed to execute every time the system is booted. I have
included such a program, Init8, as Listing 2. Init8 also performs a RESTORE on drives :2
and :3 to assure that the system knows the actual head position (track 0).

The function of the relocator is to place the relocatable code just under the current
value of HIGH$, then lower HIGH$ to protect the routine. Of course, it must also modify
any references to addresses in the relocatable portion to reflect their new location in
high memory. After installing the relocatable code, it performs a RESTORE operation on
drives :2 and :3, which has the effect of moving the heads to a known location (track 0)
so that subsequent SEEK commands will increment the heads correctly. Finally, we come to
the relocatable driver routine itself. Upon entry, it writes X'10' to port X'E4',
enabling the 8-inch drives. Next, it modifies code in the existing system disk driver
routine which it then calls. Upon return from the system routine, it restores the
changes it previously made, then writes X'00' to port X'E4', re-enabling 5-inch
operation.

Page 10

One of the changes is worth expanding on here. If a Record Not Found (RNF) error is
generated during disk I/O, a short routine is called by the LDOS driver which toggles the
density indicator bit in the DCT (and changes some associated allocation information in
the DCT.) Then the operation is tried again. This is how LDOS performs its famous auto-
density recognition. Since the new allocation data would be incorrect for 8-inch drives,
this function must be changed for 8-inch double density operation. In the routine, I
show the necessary changes as a group of commented-out lines which you may insert if you
have the necessary clock rate increase needed for double density. Please note that I
haven't tested these additions.

I would enjoy hearing from anyone else using 8-inch drives on the Model III, especially
double density. Finally, I would like to thank Les Mikesell for patiently answering all
my questions about the LDOS drivers over the phone. LDOS truly has fantastic support.

00100 TITLE '<Listing 1>'
00110 ; Config8 4/21/83
00120 ; LDOS ver. 5.1.3 disk driver for 8" drives.
00130 ; written by Peter Simon
00140 ; 1950 Hawk Drive
00150 ; Point Mugu, CA 93042
00160 ;
00170 ; This is a free, public domain program; however,
00180 ; I would certainly appreciate an acknowledgement
00190 ; from persons using this routine. (Please don't
00200 ; delete my name from the messages.)
00210 ;
00220 ;
00230 ; Hardware requirements:
00240 ; TRS-80 Model III microcomputer.
00250 ; Micro Mainframe FDC-3C floppy disk
00260 ; controller, or a compatible controller
00270 ; which uses bit 4 of port E4H to enable
00280 ; 8" operation.
00290 ; Tandon slim-line 8" disk drives or
00300 ; compatible drives.
00310 ; For 8" double density operation, a clock
00320 ; speed-up modification which at least
00330 ; doubles the clock speed is required.
00340 ;
00350 ;
00360 ; Limitations:
00370 ; The changes required for 8" double
00380 ; density operation are indicated in the
00390 ; code below. However, these changes have
00400 ; not been tested, since I don't have a
00410 ; clock speed-up kit installed. Please
00420 ; let me know if you experience any trouble
00430 ; with double density.
00440 ;
00450 ;
00460 ; Equates follow:
00470 ;
00480 HIGH$ EQU 4411H ;protected memory pointer
00490 DSKINT EQU 46F9H ;disk interrupt handler
00500 DCT2 EQU 4700H+20 ;DCT for drive :2
00510 DCT3 EQU 4700H+30 ;DCT for drive :3
00520 @DSPLY EQU 4467H ;display a message line
00530 @EXIT EQU 402DH ;normal return to LDOS
00540 ;
00550 ;
00560 ; The following section of code replaces the system

Page 11

00570 ; disk interrupt handler routine. This means that
00580 ; Config8 should not be SYSGENed unless Init8 is
00590 ; AUTOed as explained in the text of the article.
00600 ;
00610 ORG DSKINT ;address of old routine
00620 XOR A ;clear flags
00630 REPL1 EQU $+l ;label will be used
00640 ; for code modification
00650 LD A,0 ;immediate value to be
00660 ; changed to 10H for 8
00670 ; inch operation
00680 OUT (OE4H),A ;turn off disk interrupts
00690 POP HL ;discard I/O loop return
00700 RET ;done
00710 ;
00720 ;
00730 ;
00740 ; The actual 8 inch driver routine follows:
00750 ;
00760 ; Entry requirements:
00770 ; IY ==> points to DCT for desired drive
00780 ; HL ==> points to the memory buffer
00790 ; DE ==> contains cyl & sector #
00800 ; B ==> contains function # as defined
00810 ; on page 6-15 of LDOS manual
00820 ; C ==> contains drive physical address
00830 ; A ==> anything
00840 ;
00850 ; Exit conditions:
00860 ; Z <== flag set if no error
00870 ; A <== contains LDOS error code if Z not
00880 ; set
00890 ; <== Other registers may be altered
00900 ;
00910 ;
00920 ORG 6500H ;this code is relocated
00930 ; to high memory.
00940 ;
00950 ;standard LDOS header:
00960 START JR START2 ;jump around header
00970 OLDMEM DEFW $-$;previous HIGH$ address
00980 DEFB 7 ;# characters in title
00990 DEFM 'Config8' ;title of program
01000 START2 LD A,19H ;enable 8" drives
01010 OUT (OE4H),A
01020 LD (REPL1),A ;change interrupt handler
01030 ; to enable 8" drives
01040 LD A,0D0H ;change write routine to
0l050 LD (46A5H),A ; enable 8" drives
01060 PUSH HL ;save HL
0I070 LD HL,46FFH ;point to RET instruction
01080 OFFSET1 EQU $-START-2 ;symbol for assembly
01090 LD (4682H),HL ;disable density toggling
0ll00 POP HL ;restore HL
01110 LD A,05H
01120 LD (46A9H),A ;shorten write routine's
01130 ; pause loop counter
01140 CALL 4585H ;call system driver
01150 PUSH AF ;save status & error code
01160 XOR A ;enable 5 inch drives
01170 OUT (OE4H),A

Page 12

01180 LD (REPLI),A ;restore int'pt handler
01100 LD A,0C0H ;restore write routine
01200 LD (46A5H),A
01210 LD A,50H ;restore write delay
01220 LD (46A9H),A
01230 POP AF ;restore error status
01240 PUSH HL ;save HL
01250 LD HL,456BH ;re-enable density
01260 LD (4682H),HL ; toggling for 5"
01270 POP HL
01280 RET ;done!
01200 ;
01300 ;**
01310 ;
01320 ; The following lines are commented out for 8"
01330 ; single density operation. Add these lines to
01340 ; the program if you have the required clock speed-
01350 ; up installed and you wish to enable automatic
01360 ; 8" density recognition.
01370 ;
01380 ;OFFSET2 EQU $-START ;symbol for assembly
01300 ;TOGGLE8 EQU $;Toggle 8" density specs
01400 ; LD A,(IY+3) ;get flag from DCT
01410 ; XOR 40H ;toggle density bit
01420 ; LD (IY+3),A ;replace it in DCT
01430 ; LD BC,270FH ;single density info.
01440 ; BIT 6,A ;check new density
01450 ; JR Z,FIXDCT ;go if single
01460 ; LD BC,491DH ;double density info.
01470 ;FIXDCT LD (IY+7),C ;update DCT for new
01480 ; LD (IY+8),B ; dens. allocation info.
01490 ; JP 45A0H ;go RESET the drive
01500 ;
01510 ;**
01520 ;
01530 END EQU $-1 ;symbol for assembly
01540 LENGTH EQU $-START ;symbol for assembly
01550 ;
01560 ;
01570 ; The following section of code relocates the 8"
01580 ; driver to high memory and initializes drives :2
01590 ; and :3 for 8" operation:
01600 ;
01610 ORG 6000H ;start of relocator program
01620 ;
01630 ENTRY LD HL,(HIGH$) ;get old HIGH$ value
01640 LD (OLDMEM),HL ;put old HIGH$ in header
01650 EX DE,HL ;destination for LDDR
01660 LD HL,END ;source pointer for LDDR
01670 LD BC,LENGTH ;byte counter
01680 LDDR ;relocate driver
01690 LD (HIGH$),DE ;lower HIGH$ to protect
01700 INC DE ;point to routine start
01710 LD (DCT2+1),DE ;change disk driver
01720 ; pointer for drive :2
01730 LD (DCT3+1),DE ;same for drive :3
01740 ;
01750 ;**
01760 ;
01770 ; The following lines are commented out for single
01780 ; density operation. As above, these lines should

Page 13

01790 ; be added if you have the requisite hardware and
01800 ; desire to enable auto 8" density recognition.
01810 ;
01820 ; LD IY,OFFSET1 ;offset for code change
01830 ; ADD IY,DE ;IY = address to change
01840 ; LD HL,OFFSET2 ;offset for TOGGLE8
01850 ; ADD HL,DE ;HL = TOGGLE8 new addr.
01860 ; LD (IY+0),L ;move low order byte
01870 ; LD (IY+1),H ;move high order byte
01880 ;
01890 ;**
01900 ;
01910 LD B,04H ;RESTORE function
01920 LD DE,0000H ;track 0, sector 0
01930 LD IY,DCT2 ;drive :2 DCT
01940 LD A,(IY+4) ;get drive address
01950 AND 07H ;only drive address
01960 LD C,A ;place in C
01970 CALL DCT2 ;RESTORE drive :2
01980 LD B,04H ;RESTORE functio-n
01990 LD DE,0000H ;track 0, sector 0
02000 LD IY,DCT3 ;drive :3 DCT
02010 LD A,(IY+4) ;get drive address
02020 AND 07H ;only drive address
02030 LD C,A ;place in C
02040 CALL DCT3 ;RESTORE drive :3
02050 LD HL,MESS ;point to message
02060 CALL @DSPLY ;display it
02070 jp @EXIT ;back to LDOS
02080 MESS DEFB 0AH
02090 DEFM 'Config8 ver 1.0 by Peter Simon'
02100 DEFB 0AH
02110 DEFM 'Drives 2 and 3 configured for
02120 DEFM 'Tandon slim-line 8 inch drives'
02130 DEFB 0AH
02140 DEFM 'Driver relocated to high memory'
02150 DEFB 0AH
02160 DEFB 0DH
02170 ;
02180 ;
02190 ; The following fixes drives :2 and :3 Drive Code
02200 ; Table (DCT) for 8" operation.
02210 ;
02220 ORG DCT2 ;drive :2 OCT
02230 jp $-$;address supplied by
02240 ; relocator.
02250 DEFB 00100110B ;indicate by bits:
02260 ;7) not software protected
02270 ;6) single density
02280 ;5) 8 inch drive
02290 ;4) side 0 currently selected
02300 ;3) floppy drive
02310 ;2) 1/2 second delay for SELECT
02320 ;1) & 0) 10 ms STEP delay
02330 DEFB 00100100B ;indicate by bits:
02340 ;7) unused
02350 ;6) single density only!
02360 ;*** change 6) for double dens.
02370 ;5) 2 sided drive
02380 ;4) non-alien controller
02390 ;3)-0) drive address 4

Page 14

02400 DEFB 0 ;current cyl
02410 DEFB 76 ;77 tracks on the drive
02420 DEFB 15 ;16 sectors/track
02430 DEFB 00100111B ;indicate by bits:
02440 ;7)-5) 2 grans/track
02450 ;4)-0) 8 sectors/gran
02460 DEFB 38 ;dir. on cyl #38
02470 ORG DCT3 ;fix drive :3 same way
02480 JP $-$
02490 DEFB 00100110B
02590 DEFB 00101000B ;different drive address
02510 ;*** change bit 6) for
02520 ; double density
02530 DEFB 0
02540 DEFB 76
02550 DEFB 15
02560 DEFB 00100111B
02570 DEFB 38
02580
02590 END ENTRY ;start running at ENTRY

00100 TITLE '<Listing 2>'
00110 Init8 4/21/83
00120 A program to restore 8" drives :2 and :3 to
00130 track 0, sector 0. This seems to be necessary
00140 for the system to properly access the 8" drives
00150 after a boot. Written by Peter Simon
00160 1950 Hawk Drive
00170 Point Mugu, CA 93042
00180
00190
00200 Equates follow:
00210
00220 @EXIT EQU 402DH ;normal return to LDOS
00230 DCT2 EQU 4700H+20 ;drive :2 DCT
00240 DCT3 EQU 4700H+30 ;drive :3 DCT
00250 DSKINT EQU 46F9H ;disk interrupt handler
00260 ;
00270 ;
00280 ;
00290 ;
00300 ORG 6000H ;start of program
00310 ENTRY LD B,04H ;RESTORE function
00320 LD DE,0000H ;track 0, sector 0
00330 LD IY,DCT2 ;drive :2 DCT
00340 LD A,(IY+4) ;get drive address
00350 AND 07H ;only drive address
00360 LD C,A ;place in C
00370 CALL DCT2 ;RESTORE drive :2
00380 LD B,04H ;RESTORE function
00390 LD DE,0000H ;track 0, sector 0
00400 LD IY,DCT3 ;drive :3 DCT
00410 LD A,(IY+4) ;get drive address
00420 AND 07H ;only drive address
00430 LD C,A ;place in C
00440 CALL DCT3 ;RESTORE drive :3
00450 JP @EXIT ;back to LDOS
00460 ;
00470 ;
00480 ; The following section of code replaces the system
00490 ; disk I/O interrupt handler routine. It has been

Page 15

00500 ; located in this program with the expectation that
00510 ; Init8 will be AUTOed to load and execute every
00520 ; time that the system is booted. It will not
00530 ; affect normal 5" operation, but will prevent
00540 ; any weirdness from occurring if Config8 is
00550 ; SYSGENed into the system. See text of article
00560 ; for further explanation.
00570 ;
00580 ORG DSKINT ;replace system routine
00590 XOR A ;leave alone
00600 LD A,O ;"0" changed by Config8
00610 OUT (0E4H),A ;turn off disk interrupts
00620 POP HL ;discard I/O loop return
00630 RET
00640 ;
00650 END ENTRY ;begin execution at ENTRY

ACTIVE VARIABLE DUMP for LBASIC

By Alan R. Moyer, 993 San Angelo Dr., Hamilton, Ohio 45013

Quite often in developing and/or debugging BASIC programs over 50 lines long, it is
useful, if not downright essential, to determine the contents of any or all of the
variables used in a program. A well used technique is to stop program execution and
enter "PRINT xx" from the keyboard or sprinkle similar lines throughout the program
itself. I desired a better tool than that. LBASIC/OV4 is what I developed to meet that
need for me. LBASIC/OV4 is an active variable dump that is patched into LBASIC and will
display the contents of simple variables, array variables (up to 5 subscripts), and user
defined functions. Integers, single and double precision, and string variables are
supported. Output can be sent to either video display (*DO) or printer (*PR). As with
standard LBASIC, shift-@ will pause the display and BREAK will abort back to LBASIC.

LBASIC/OV4 is called as an LBASIC overlay with the "CMD xx" convention. The syntax is:
CMD "V devspec parms"

The available parameters are:

-S Simple variables only
-A Array variables only
=x Only variables whose names begin with "x"

Devices *DO (video) and *PR (printer) are the only legal output devices, *DO is the
default device. These devices can be routed accordingly for specific user needs.

The reason for the limited output devices is the trick used to display the variables.
Not wanting to reproduce ROM code that converts variable data into ASCII, I decided to
patch into the ROM "PRINT" and "LPRINT" code to shorten my program. Very simply, this
program looks through the variables table of a program that is in memory, building a
buffer with each variable's ASCII name and "type" along with an equal sign (=), all
inside quote characters. The variable name is then duplicated after the last quote and a
zero is added to terminate the buffer. At this point the buffer would look something
like this:

"AX$ = "AX$
The HL register is pointed to the beginning of the buffer and the ROM "PRINT" or "LPRINT"
code is called. User defined functions and arrays are handled in overall similar, but
obviously more complex, fashion.

This version was specifically written for the Model I and the LBASOV4/FIX patch file is
for Model I LBASIC 5.1.3. Since I don't have access to a Model III, I have no information
about compatibility with Model III systems.

Page 16

If you don't want to modify your version of LBASIC for some reason, you can remove
LBASIC/OVl or LBASIC/OV2 from your disk and rename LBASIC/OV4 to whichever you removed.
For instance, replacing LBASIC/OVl (normally the renumbering overlay) will allow variable
dumping with the CMD "N" command. Just use the new syntax for the "V" command with the
"N" command, for example, CMD "N *PR –V".

Comments and suggestions about this LBASIC utility can be routed to me via the LDOS SIG
on Micronet.

.LBASIC patch to allow use of LBASIC/OV4.BASIC

.Patch code to allow parameter passing
X'5464'=C3 A9 64
X'64A9'=FE 58 CA 68 54 04 04 FE 56 CA 68 54 C3 D7 54
.Patch code for single letter access
X'5803'=C3 B8 64
X'64B8'=04 04 FE 56 CA 68 54 C3 4A lE 00
.Alter end of LBASIC code for buffer info
X'53CE'=C2 64

Use this code in conjunction with BINHEX to produce the LBASIC/OV4 file.

05 06 4C 42 41 53 49 43 1F 23 43 6F 70 79 72 69 67 68 74 20 28 63 29 20 31 39 38 32 20
62 79 20 41 6C 61 6E 20 52 2E 20 4D 6F 79 65 72 01 02 00 52 CD 52 54 21 E3 54 CD 41 54
3E 01 B7 CA 12 52 CD 3B 52 3E 01 B7 CA 1B 52 CD B3 52 21 30 52 11 80 44 D5 01 0B 00 ED
B0 D1 21 18 43 36 2A C3 33 44 4C 42 41 53 49 43 2F 43 4D 44 03 21 21 55 CD 41 54 DD 2A
F9 40 ED 5B FB 40 CD 27 54 C8 3A E3 55 B7 CA 5C 52 47 DD 7E 02 B8 C2 A0 52 CD B8 53 DD
7E 02 FE 81 FA 8F 52 E5 DD 5E 03 DD 56 04 21 EE 56 E5 06 3A CD EC 53 36 00 E1 C1 CD 85
2B C5 E1 11 64 55 CD EA 53 21 EB 55 CD 41 54 C3 A0 52 11 5F 55 CD EA 53 06 3D 11 EE 55
CD EC 53 CD 0D 54 DD 7E 00 C6 03 4F 06 00 DD 09 CD 2E 54 CA 1B 52 C3 45 52 21 34 55 CD
41 54 DD 2A FB 40 ED 5B FD 40 CD 27 54 C8 3A E3 55 B7 CA D4 52 47 DD 7E 02 B8 C2 A2 53
CD B8 53 DD 7E 05 32 D7 55 FE 06 DD E5 DA F0 52 11 46 55 CD EA 53 CD 0D 54 C3 A0 53 87
47 DD 23 10 FC FD 21 D9 55 06 0A FD 36 00 00 01 02 00 53 FD 23 10 F8 36 28 23 FD 21 D9
55 3E 01 32 D6 55 E5 3A D6 55 B7 CA A0 53 DD 6E 04 DD 66 05 FD 5E 00 FD 56 01 B7 ED 52
CA 84 53 D5 E1 13 FD 73 00 FD 72 01 CD F7 53 06 04 1A FE 30 C2 41 53 13 10 F7 E1 E5 CD
EA 53 3A D6 55 4F 3A D7 55 91 CA 6C 53 36 2C 23 DD 2B DD 2B FD 23 FD 23 3A D6 55 3C 32
D6 55 CD 2E 54 CA 1B 52 C3 10 53 36 29 23 11 5F 55 CD EA 53 06 3D 11 EE 55 CD EC 53 CD
0D 54 E1 C3 10 53 FD 36 00 00 FD 36 01 00 FD 2B FD 2B DD 23 DD 23 3A D6 55 3D 32 D6 55
E1 E1 C3 10 53 DD E1 DD 5E 03 DD 56 04 01 05 00 DD 09 DD 19 CD 2E 54 CA 1B 52 C3 BD 52
21 EE 55 DD 7E 02 FE 80 FA C5 53 D6 80 77 23 DD 7E 01 B7 CA D0 53 77 23 DD 7E 00 FE 08
C2 DC 53 0F C3 E3 53 FE 04 C2 E3 53 3C 3C 47 3E 27 90 77 23 C9 06 00 1A B8 C8 B7 C8 77
13 23 C3 EC 53 11 E8 55 0E 05 3E 0A CD C4 01 02 00 54 44 C6 30 12 1B 0D C2 FE 53 11 E4
55 C9 36 00 FD E5 DD E5 21 EA 55 3A D8 55 B7 F5 C4 9B 20 F1 CC 67 20 DD E1 FD E1 C9 D0
E5 E1 B7 ED 52 C9 DD E5 FD E5 CD 2B 00 FE 60 CC 49 00 FE 01 FD E1 DD E1 C9 3A D8 55 B7
DD E5 F5 C4 67 44 F1 CC 6A 44 DD E1 C9 CD C4 54 FE 0D C8 FE 2A C2 82 54 CD CC 54 FE 44
C2 70 54 CD CC 54 FE 4F C2 DA 54 C3 81 54 FE 50 C2 DA 54 CD CC 54 FE 52 C2 DA 54 AF 32
D8 55 23 CD C4 54 7E FE 0D C8 FE 2D CA 96 54 FE 3D CA B1 54 C3 D1 54 CD CC 54 FE 53 C2
A5 54 AF 32 13 52 C3 81 54 FE 41 C2 D1 54 AF 32 0A 52 C3 81 54 CD CC 54 FE 41 FA D1 54
FE 5A F2 D1 54 32 E3 55 C3 81 54 7E FE 20 C0 23 C3 C4 54 23 7E CB AF C9 21 75 55 CD 67
44 C3 1B 52 21 9B 55 CD 67 44 C3 1B 52 2A 2A 2A 2A 2A 20 41 63 74 69 76 65 20 56 61 72
69 61 62 6C 65 20 44 75 6D 70 20 2A 2A 01 DB 00 55 2A 2A 2A 0A 20 20 20 20 56 65 72 73
69 6F 6E 29 34 2E 30 20 28 4C 44 4F 53 29 20 2D 20 41 72 6D 0D 0A 53 69 6D 70 6C 65 20
56 61 72 69 61 62 6C 65 73 3A 0D 0A 41 72 72 61 79 20 56 61 72 69 61 62 6C 65 73 3A 0D
2A 20 54 6F 6F 20 6D 61 6E 79 20 73 75 62 73 63 72 69 70 74 73 20 2A 29 00 20 3D 20 22
00 20 3C 55 73 65 72 20 44 65 66 20 46 75 6E 63 3E 0D 41 63 74 69 76 65 20 56 61 72 69
61 62 6C 65 20 44 75 6D 70 3A 20 50 61 72 61 6D 65 74 65 72 20 65 72 72 6F 72 0D 41 63
74 69 76 65 20 56 61 72 69 61 62 6C 65 20 44 75 6D 70 3A 20 2A 44 4F 20 6F 72 20 2A 50
52 20 6F 6E 6C 79 20 76 61 6C 69 64 20 6F 75 74 70 75 74 20 64 65 76 69 63 65 73 0D 00
00 01 01 0D E3 55 00 20 20 20 20 20 00 22 20 20 20 02 02 00 52

Page 17

MY BASIC ANSWER
by E.R. Cheatham, 5127 Blueberry Hill, Houston, Texas 77084

Intrigued by ads, I bought The Basic Answer (TBA) software package. However, I have to
admit wondering if TBA would work satisfactorily with LDOS and Newscript in a Radio Shack
Mod I computer. My fear was soon put to rest. These three programs make a dynamite
package!

BTBA (Before The Basic Answer), my BASIC programs were written with the standard BASIC
editor. Since I write programs by "semi-flowcharting" them in my mind (due to laziness),
there are many times when I need to insert more program lines than there is space
available. If this has ever happened to you, I'm sure you know that your choices are
simple. Either use a renumber command to give you more space, or overtype existing line
numbers- - - which means retyping the original commands using new line numbers. Either
way, it is time consuming and a real hassle.

Other times, I would have liked to repeat a line or lines in another area of the program.
The old way was to type all of these lines again. In a similar manner, there were times
when I wanted to move a block of commands to another area and erase them at the old
location. Again, it meant retyping and then deleting the old lines. Time consuming!!

Almost any block move of program lines will involve correcting any line number references
used in gosub, goto, on x goto commands to the new line numbers. Usually, one or two
references are overlooked which gives you even more program bugs to play with.

There is a new and superior method for writing a basic program on the Radio Shack
computer---LDOS, a good word processor, and The Basic Answer.

TBA offers these major advantages:
1. There is no need for line numbers.
2. Variable names can be long (14 characters).
3. The text is self-documentary.

NO LINE NUMBERS REQUIRED

The ROM-based basic editor requires a program with line numbers to be able to save and
load the program to/from a diskette, and to run the program. Now, don't worry about line
numbers. Use the powerful editing capabilities of a good word processor. Let your ideas
flow.

Of course, it is evident that the word processor can find and change a word, a letter, or
a phase easily. Or it can globally find and exchange letters and words. But more
importantly, consider how easy it is to insert one or more lines of text. Using an
editor and incrementing line numbers by ten, there is room to only insert nine lines of
new text before something must be done to provide more space. Now, you can insert as
many lines as you want to add.

Block moves of text are also important. Newly added lines can be exact copies of
original lines--made in a second. You can move data around freely--- place a copy of
data where needed, leave original data where it is, or delete it automatically. This
text will be compiled by TBA later. Then, and only then, will line numbers be important.

TBA makes all of this possible with the use of "labels". A label allows cross-
referencing a line within other lines. For instance, a reference line can be given as
"gosub @yes.no.answer". (The "@" symbol denotes a label or a variable name.) Then, at the
beginning line of the subroutine called @yes.no.answer, place a label
"@yes.no.answer:......... etc.". The label allows referencing to a specific text line

Page 18

without the use of numbers. The actual subroutine can be placed anywhere in the program
and TBA will find it. Each 1abel is unique within that program. The 1abel can be
referenced many times within the program. Text lines without numbers can be moved
throughout the program without any concern for changing reference numbers.

LONG VARIABLE NAMES

The ROM editor will allow only one or two character significant variable names. TBA
permits up to 14 characters for variable names such as @ROLL.DICE, @CREDIT.MEMO,
@EMPLOYEE.NAME. These names actually mean something and are easier to remember while
programming than names like Zl, Z2, Z3(x). TBA can even tell the difference between two
variable names such as @EMPLOYEE-NAME and @Employee.Name.

SELF-DOCUMENTING

The completed text is easy to read in words that are understandable. This may not seem
important to you until you have returned to work on a program after leaving it for
several months. Without TBA text, the program can look as familiar as Martian, and even
less understandable.

HOW TO USE TBA

As discussed earlier, use a good word processor to produce the program text. Then save
the program to disk. The processor saves the program in ASCII format (as a sequential
output file). Use the file extension name "/TBA" such as "payables/TBA". From DOS Ready
mode, call TBA. TBA will ask a few questions concerning output and then begin the
compiling. TBA makes five passes through the text to check that all variables and labels
are defined once only; and then it assigns line numbers. TBA reports any error and its
line number in the original text. TBA does not proofread for incorrect BASIC commands
such as goti or gosib--- that is the job of the ROM editor.

The fina1 product of TBA is a disk file such as PAYABLES/TXT which is saved in ASCII
format. I prefer to go into BASIC mode, load in PAYABLES/TXT, then resave it as
PAYABLES/BAS. The only reason for this is that PAYABLES/BAS is saved in standard,
compressed format which loads much faster.

TBA GOODIES

Upon initializing, TBA asks several questions and gives several options. You choose the
display, either CRT screen or lineprinter. One option will print one text line followed
by its equivalent, translated command line. I personally do not like this option because
a long program will produce reams of paper printout.

In my opinion, the best option is no program listing, but a very comprehensive cross-
reference listing which shows every label and variable used, and the program lines in
which they occur. It even shows the long, text name for a variable and its translated,
two character name. This is valuable for debugging the program.

Here is a warning! Never have the LDOS PR/FLT print filter active when using TBA! TBA
has its own print filter. The two filters will fight and the printout is a disaster - -
- 2-3 lines, skip 1 1/2 pages, print 1 1/2 pages, etc. This is not mentioned in an
otherwise well-written TBA manual.

WRITING LARGE PROGRAMS

TBA is disk-based so the program length is limited only by the capacity of a disk to
contain all of the text program. The real problem is with Newscript. Newscript capably
handles a file by using subfiles of approximately 350 lines each. At the end of each
subfile, Newscript places an append command which is interpreted during printout to fetch
the next subfile. The point is that Newscript must have the file in memory so that it
can be edited. TBA does not recognize the append commands. Therefore, TBA cannot use
these subfiles.

Page 19

My game program turned out to be some 990 lines long. What do you do when your program
is too large for Newscript? One answer is to break it into several subfiles. Mine had
three subfiles. The subfiles could not be merged since the ROM editor cannot load these
ASCII subfiles directly as they have no line numbers. I wrote the following simple
program to 1ine input one line at a time. add a 1ine number, and save it back out to
disk. This was done for each subfi1e. The beginning number for the next subfile was
greater than the last number of the previous subfile. Finally, all of these files are
numbered. Then load subfile 1 into memory, merge subfile 2, and then merge subfile 3.
The composite program is saved as "GAME/TBA" in ASCII option A command. TBA will operate
on a program which does have line numbers! It simply ignores the line numbers as it
compiles. The resultant program is a "standard" basic program.

10 REM A short program to add line numbers to word processor output
20 REM text so that the text can be used by the ROM Editor
30 REM by ER Cheatham 04/15/83
40 REM Program is used when text is larger than the processor
50 REM can hold in memory at one time. Write the last line
60 REM number of present subfile. Beginning line number of
70 REM next subfile is last number plus 30-40.
80 CLEAR 3000: CLS
90 INPUT"What is name of file to be numbered ";FS$
100 INPUT"What drive is it on ";Dl$: PRINT: PRINT
110 INPUT"What is new file name ";FD$
120 INPUT"What drive will it be on ";D2$: PRINT: PRINT
130 INPUT"What is the beginning line number ";LN%: IF LN% < 10 THEN LN%= 10
140 CLS: PRINT@ 448,"Present line # is==>";
150 OPEN "I",1, FS$ + ":" + D1$: OPEN "O",2, FD$ + ":" + D2$
160 LINEINPUT #1, A$: N$= STR$(LN%): L=LEN(N$)
170 B$= RIGHT$(N$, L-1) + " " + A$
180 PRINT@ 468, LN%: REM could put print or lprint B$ here
190 PRINT #2, B$
200 LN%= LN% + 10
210 GOTO 160: REM will run until end of file error and stop

Just a note--- as you run the program to debug it, there are apt to be a few bugs around.
Obviously, any errors should be corrected in the original text so that it will always be
the current version.

TBA is a tool which allows the power of a word processor to be used in writing basic
programs. It gives you an extensive variable cross-references listing. TBA is a very
good program. I am pleased that I have it!

An ASCII File Listing Utility for The BASIC Answer

By Jeffrey Brenton, P 0 Box 146, Woodstock Illinois 60098

Several years ago, I read a couple of articles about programs to 'beautify' BASIC program
listings. This program is the result of my labors to do it my way. As the old saying
goes, 'any given program will expand to exceed the limits of available memory'. What
started life as a ten-line LBASIC program for ASCII-saved BASIC files eventually grew
into the 'monster' you see now. It still runs in less than 32K, including string space,
but for how much longer?

When The BASIC Answer (or TBA) arrived, it became obvious that lower-case recognition
would have to be added to LISTER (the old name) to allow it to work on all TBA -
acceptable files, so why not re-write it in TBA? Within two hours, I had a workable
version up and running. Testing was done on its own source file, written mostly in lower
case. Unfortunately, it was SLOW! No real problem, just run it thru BASCOM. This is
when I found out that all those patches to get BASCOM to run on the model III (October
1981 Quarterly) apply equally to 5.1 on the Model I. After getting that fixed, everything

Page 20

was great. LISTFILE/CHN (new name) was faster than my MX-100 at formatting lines, but
still lacked any error handling. This has been added for this article, along with
default extensions to reduce typing.

LISTFILE is written in TBA format. There are several reasons for this. It allowed me to
be very generous with the comments without slowing the program down any more than the
interpreter would, as only remarks proceeded with 'REM' appear in the final program. It
also gives those of you who do not yet own TBA a chance to see what a TBA source file
looks like. An explanation of some of the features is in order.

TBA is a text-processing utility that allows you to write structured programs in TRS-80
BASIC (or MBASIC v4). You may use variables with up to 14 significant characters, as we11
as meaningful1 labels for procedures instead of 1ine numbers. 'GOSUB @CHECK.RANGE' is
much more meaningful to someone reading your program than 'GOSUB 920', and merging
library subroutines into a program is much easier when you don't have to worry about
conflicting line numbers.

Variables may be 'global', available throughout the program, or 'local', valid only
within their own subroutine. But with this flexibility comes some restrictions. All
variables must be declared somewhere in the program or they cannot be properly translated
into a form BASIC can handle.

An example of global definitions is found in lines 4, 5 and 6 of LISTFILE. The '=' sign
in the first column of each line tells TBA that these are global variables. Each
variable starts with a letter, and ends with a type-declaration character. In between,
you can use any combination of between 1 and 13 additional letters and/or numbers, plus
two special characters, the period and underscore. Spaces are NOT allowed, and reserved
words that end in a type-declaration character, such as 'TIME$' or 'STRING$' cannot be
used. Reserved words can, however, be WITHIN a variable name, so the name DAY.TIME$ is
valid.

Local variables follow the same rules as globals, but are declared differently. When you
start a subroutine, you assign it a label beginning with '@'. A local is declared by
putting it after the label to which it applies, as in '@CHECK.RANGE =
HIGH.LIMIT%,LOW.LIMIT%'. In this example, the variables 'HIGH.LIMIT%' and 'LOW.LIMIT%'
are valid only in this subroutine, from the label line up to the 'RETURN' instruction.
Either or both may share their name with a global and/or one or more other locals, but
each will be translated as a unique BASIC variable. A note of caution, however. If you
plan on taking advantage of the 'RUN program, V' option to chain programs together, avoid
local variables. TBA translates all local variables into two letter BASIC variables
before doing the globals, so even if all your global declarations are matched one-for-one
in both source programs, if one has more locals than the other there can be conflicting
translations. TBA translates variables by first trying to truncate them to their first
two characters. If this combination has already been used, it increments the second
character by one and tests it again. Thus, if you use TEST% as both a local and a
global, the local version would become TE%, since locals are translated before globals
and the global would become TF%. If your second program uses TEST% as a global and has
no local variables that begin with 'TE', TEST% would become TE%, and would get the value
of the local TEST% passed to it instead of the global value. Take it from someone who
spent three days learning this tid-bit, it is a hard-to-find bug.

Another feature of TBA is conditional compilation, an example of which is found in lines
7 through 10. Here we decide whether or not to include the 'clear' statement in the BASIC
program. If this program is to be used with the interpreter, we must give it string
space to work with. But BASCOM will commit suicide if you include a 'CLEAR' statement.
By using *IF directive / *END, the intervening lines are only included if you specify
'directive' when you run TBA. This allows you to write one source program to cover any
number of machines, and by including the machine-dependent items within *IF's, non
machine-dependent changes need only be made once to cover all machines.

Page 21

The *TITLE command lets you add a 14 character title that will appear on each page of the
TBA listings, while *PRLINES and *PAGE control the format of the listing. By using *LIST
ON and *LIST OFF, you can have some or all lines skipped in the TBA listing.

All lines are given line numbers according to their position in the source file, i.e. the
30th line in the source becomes line 30 in the BASIC file. If you specify full
compression during compilation, all unnecessary spaces will be removed from the final
program. It will not, however, combine statements from different lines to 'optimize' the
program.

After processing your source file, TBA gives you a cross-reference listing of all labels
and variables, showing what they were translated to and all lines referencing them. This
is VERY helpful in tracking down errant variable, and is much like CMD"X" in LBASIC,
except for being more readable.

Getting back to LISTFILE itself, the program was only designed to work on pure ASCII
files. This means that if you want a neat listing of you favorite BASIC program, you
must first SAVE it with the ',A' option. It checks each line one character at a time
looking for the 'trigger characters' : and E. When it finds one that is not within double
quotes, it takes appropriate action, either immediately starting a new line (':') or
checking the next few characters for a match ('E').

The line numbering option is included so that if TBA has problems understanding your
source code, you can find the offending line quickly. The same effect can be obtained
with LIST filename (P,N) from LDOS Ready, but without the nicety of one statement per
line.

Have fun with The BASIC Answer and, hopefully, with LISTFILE. You'll find it much easier
to read those tightly-packed lines of BASIC code now. That can save almost as much time
as it takes to run the program (maybe more)! One warning though. LISTFILE will break
your line up incorrectly if you use 'ELSE' inside a label or variable name. It can't be
helped unless I get really ambitious and have it analyze the line in both directions and
try to find 'IF' statements to match up, or test against the variable declarations.
Maybe if I use all 48K and give it all night to run..............

Any questions can be sent to me at the above address or via the LDOS or QSD bulletin
boards on CompuServe to <73l05,532>

Sample output:

If your program contains a line such as:

@test.line: if true% then print output$: true% not(true%) else print "False": goto
@try.again

it would become:
12 @test.line

: if true% then print output$
: true = not(true%)

else print "False"
goto @try.again

TBA Source code

*TITLE"List utility"
*PRLINES=56
rem program to list ascii files from disk to printer with breaks at ":" and "ELSE" and
optional line numbers. Version 2.1 by Jeffrey Brenton, Tandern-Flow Systems Ltd
=line.from.disk$,test.character$,counter%,line.counter%
=file.name$,drive.number$,print.numbers$,quoted.string%
=file.to.open$,uppercase$,yes.else%

Page 22

'let's separate these declarations from the rest of the program in the listing
*PAGE
*IF INT
'let's get ourselves some working room, but only if running under the INTerpreter
clear 15000
*END
'define a generic upper-case converter function
def fn uppercase$(line.from.disk$, counter%) = chr$(asc(mid$(line.from.disk$, counter%,
1)) and &H5F)
'program really starts here
@begin
line.counter%=l
cls
@file.name
input "Please enter file name to list";file.name$
if len(fi1e.name$) > 12 or len(file.name$) < 1 then print "Invalid file name.": goto
@file.name
@drive.number
input "Please enter drive number";drive.number$
'check range of input drive number - change to suit your system
if len(drive.number$) > 1 or drive.number$ < "O" or drive.number$ > "3" then print
"Invalid drive number": goto @drive.number
on error goto @file.not.found
@open.the.file
file.to.open$=file.name$ + ":" + drive.number$
open"I",1,file.to.open$
on error goto 0
@line.numbers
print.numbers$="Y"
input"Do you wish to have line numbers printed (<ENTER> = yes)";print.numbers$
print.numbers$=fn uppercase$(print.numbers$, 1)
if instr("YN",print.numbers$) 0 then print "Invalid response. Try again": goto
@line.numbers
lprint file.name$;tab(50)time$
'it is now time to start reading the file
@read.record
lend of file yet?
if eof(l) then @done.with.file
'no, so lets get another line
lineinput#l, line.from.disk$
if print.numbers$ = "Y" then lprint line.counter%; tab(7);
'check to see if any of our 'trigger' characters are in line - if not, print line
immediately and skip remainder of tests for time's sake
if instr(line.from.disk$,":") + instr(line.from.disk$,"E") + instr(line.from.disk$,"e") =
0 then lprint line.from.disk$: line.counter% = line.counter% + 1: goto @read.record
'now we have to check each character individually to find 'triggers'
for counter% = 1 to len(line.from.disk$)
test.character$ = mid$(line.from.disk$, counter%, 1)
'if test character is a double quote, toggle state of quoted.string%
if test.character$ = chr$(34) then quoted.string% = not (quoted.string%): lprint
test.character$;: goto @done.testing
'if quoted.string% is TRUE, then we can ignore this character - just print it and go on
if quoted.string% then lprint test.character$;: goto @done.testing
'for colons, we must terminate the current line and then indent the next, either 5 spaces
without line numbers, or 12 with
if test.character$ = ":" then lprint: if print.numbers$ = "Y" then lprint
tab(12)":";:goto @done.testing else]print tab(5)":";: goto @done.testing
'if this is an "E", then it might be an "ELSE", so go to the subroutine to test the next
3 characters - if it is an "ELSE", terminate current line and start new one, either at
left margin or indented 7 spaces
'depending on whether or not line numbers are enabled

Page 23

if fn uppercase$(test.character$,l) = "E" gosub @maybe.else: if yes.else% then_lprint:
if print.numbers$ = "Y" then lprint tab(7)test.character$;: goto @done.testing else
lprint test.character$;: goto @done.testing
'plain, old, ordinary character, so let us print it on current line and try the next
one
lprint test.character$;
@done.testing
next counter%
'we're at the end of this line, so let's terminate it, reset quoted.strings% increment
line counter and read next line
lprint
quoted.string% = 0
line.counter% = line.counter% + 1
goto @read.record
'done reading this file, so be neat and close it
@done.with.file
close 1
'ring Epson's bell (optional) and do a form-feed
lprint chr$(7);chr$(12);
'and then go get another file name to list
goto @begin
'here's where we check to see if we've found an "ELSE"
@maybe.else
yes.else%=O
'if the line has less than 3 characters left, then it can't be an "ELSE", so to avoid
function call errors, skip it
if len(line.from.disk$)-counter% < 3 then @not.else
if fn uppercase$(line.from.disk$, counter%+l) <> "L" then @not.else
if fn uppercase$(line.from.disk$, counter%+2) <> "S" then @not.else
if fn uppercase$(line.from.disk$, counter%+3) <> "E" then @not.else
'passed all tests to qualify as an "ELSE", so make flag TRUE
yes.else%=-1
@not.else
return
@file.not.found
'make sure error is 'File not found'
if err <> 106 then @abort
'if the file isn't found on the first try, see if any extension was specified - add a
default, such as /tba, and try again
if instr(file.name$,"/") = 0 then file.name$ = file.name$ + "/TBA": resume @open.the.file
'if not found with extension, get another name
print "File ";file.name$;" not found on drive ";drive.number$;". Please try again."
resume @file.name
@abort
'error was something other than 'File not found'
on error goto 0
end

EASY VISICALC

by James E. Bruckart, M.D., 387 High Street, Hanover, PA 17331

The positive feedback I received from last Quarterly's "EASY LSCRIPT" article prompts me
to discuss the idea of using LDOS's key-stroke multiply (KSM) feature to enhance
VisiCalc.

VisiCalc uses a "presentation character" (i.e.-"/") prior to each user command. The LDOS
keyboard driver and KSM facility allow the user to input discrete commands (that wi11 not

Page 24

be confused with data) by using the <CLEAR> and alphabetic key combinations. For
example, rather than </> <P> <P> to activate the printer mode, simply type <CLR-P>. In
addition, type <CLR-L> to load a disk file or <CLR-S> to save the workspace to disk.
LDOS's KSM facility issues the original instruction in response to the abbreviated
commands, and hence there is no need to alter the original VisiCalc program (except to
apply the appropriate patches designed to allow VisiCalc to run under LDOS). For special
matrix operations, VisiCalc commands continue to work as before.

VC/KSM is created by typing BUILD VC/KSM, and typing the responses noted in listing 1.
Plenty of blank responses are provided for your personal key combinations. For example,
a frequently used file may be designated to load and save with the responses
/SLfilename/VC; and /SSfilename/VC;.

I have included a "Help" feature which is selected by pressing <CLR-H>. This command
saves the current workspace in TEXT/VC and loads the Visicalc file HELP/VC (listing 2).
To return to the original workspace, type <CLR-C> (to clear the screen) and <CLR-Z> (to
load TEXT/VC). HELP/VC is a sample of the mnemonic keyboard responses in VisiCalc
format. It can be entered with a text editor or by typing BUILD HELP/VC from the LDOS
Ready prompt. More inventive users may prefer a machine language "Help" routine that
utilizes the /X- command provided by the LDOS patch to Visicalc (see Earl Terwilliger's
Z-Command from the Jan 83 Quarterly).

Finally, I include a Job Control Language (JCL) program - EASY/JCL. The previous
Quarterly missed the JCL program to initialize the Easy LScript configuration, so I have
rewritten it to select LScript or Visicalc. Simply type DO EASY (program), where program
is LSCRIPT or VC.

In summary, EASY VISICALC continues the trend to standardized and more memorable mnemonic
commands. Frequent and occasional users will prefer the faster command input and more
easily remembered commands. This "ease-of-use" can keep a program up-to-date and prevent
its fall into disuse.

.Easy LScript and VisiCalc JCL Initialization Program
//IF LSCRIPT
FILTER *KI KSM LSCRIPT
LSCRIPT

//KEYIN Type <1> to initiate spelling checker =>
//1

PROOFRDR
//STOP
///
//EXIT
//ELSE
//SET NOTLSCRIPT
//END
//IF VC&NOTLSCRIPT
FILTER *KI KSM VC
VC
//STOP
//ELSE
//SET NOTVC
//END
//IF NOTLSCRIPT&NOTVC
.Syntax error - proper form is => DO EASY (program)
 where program is "LSCRIPT" or "VC"
//EXIT
//END

Page 25

VC/KSM Filter Data
A=> G=> /SLTEXT; M=> /M R=> /R X=> /X
B=> /B; H=> /SSTEXT;/SLHELP; S=> /SS Y=>
C=> /C I=> /I N=> T=> >Al; Z=>
D=> /D J=> O=> U=>
E=> /SQ K=> P=> /PP V=>
F=> /F L=> /SL Q=> W=>

 Text for HELP/VC
>D8:"xt!
>C8:"eturn to tex
>B8:"CLR-G> to r
>A8:"<CLR-C> & <
>D6:"X Command
>C6:"Replicate
>B6:"Load
>A6:"Format
>D5:"W
>C5:"Q
>B5:"K
>A5:"Exit
>D4:"V
>C4:"Print
>B4:"J
>A4:"Delete
>D3:"U
>C3:"O
>B3:"Insert
>A3:"Clear
>E2:"Z
>D2:"Top
>C2:"N
>B2:"Help
>A2:"Blank
>E1:"Y
>D1:"Save
>C1:"Move
>B1:"Get Text
>A1:"A
/W1
/GOC
/GRA
/GC11
/X>Al:>A9:

Review of Profile III+ for the LDOS Operating System

by Sam Goldberg

Laurelwood Products, Inc.
12520D Quicksilver Drive
Rancho Cordova, Ca. 95670
(916) 351-0607
CompuServe # 72265,416

Profile III+ Data Management Package was written by The small Computer Company. This
package is sold through Radio Shack Stores as the "hard disk version" or by ordering it
directly from them at 230 West 41st Street, Suite 1200, New York, NY 10036, (212) 398-
9290.

Page 26

Profile III+ is a Data Base Management program designed for the Radio Shack Model III
Micro-Computer. This package allows the user to define the initial structures, formats,
and will permit a wide range of manipulations to the data base.

Profile III+ has several powerful features that I will discuss in more detail later on,
but here are some highlights...

- Permits quick access to individual records or groups of related records
- 36 User Defined Search Fields
- Five User Defined Screen Formats
- Five User Defined Report Formats
- Five User Defined Label Formats
- Special Index Feature for High-Speed locating of a specific record or series of

records.
- Custom User Menus for Internal Profile Use or Overall System Applications
- Math Package allows Addition, Multiplication, Subtraction, and Division of data within

fields.
- Associated Fields can be 'Clustered' into search groups
- Password protection available for each screen, report, or label format
- Mass-Mode for Recalculation, Hardcopy, Deletion, and Purge features for specified

records
- Separate diskette to allow access for selected employees to creation functions of

Profile III+
- Can be used to pass information to Model III SuperScripsit for Form Letters
- Can pass information to Model III Visicalc for extended mathematical functions

The minimum equipment required for this package is a Model III Computer with 48k memory
and One disk drive. The manual states that a two drive Model III is required, but I
found that the program can be run with just a single disk drive or on the 5Meg Hard Disk
Unit. You will also need a printer with printer cable to produce Hardcopy of records.

You receive this program on two 5 1/4" diskettes. The first diskette is the Creation
Disk and the other is the Runtime Diskette.

Creation Diskette

This disk contains all the necessary programs to create your database system. This
includes the modules to define the fields, screens, reports, labels, mathematical
formulas, and selection formats.

In defining your file, you are prompted to name the file to contain your records. This
is an up-to-eight character name that identifies your file. You are then able to define
your fields. These fields are placed into one of four available segments. Each of these
four segments can hold a record length of from 1 to 255 characters, with these characters
being defined into field lengths with appropriate headings and field numbers.

In the first segment you can define related fields as being in the same logical group.
These fields are treated as a single field for searching, sorting, and selecting records.
I find this to be a very powerful feature.

You are also able to review and edit any segment in your fields, and can reserve
characters previously unused for future additions (this feature is a life saver when you
found out you forgot a heading ...)

Now you can define your screens (Yes, I said screens). Profile III+ allows up to five
screens for your files. You can even switch instantly between them while updating or
searching later on.

Page 27

Another nice feature of the screen formatting is the availability to use the Model III's
Special Character Set on the screen. However, these special characters are only for
screen displays, as the printer translates them into periods during any printing from the
screen (oh well, there goes the pointing finger...).

Field indicators define the type of entry you can make to each field. There are the
standard indicators for alphabetic and numeric characters as well as several special
feature indicators such as Must-Fill Alphabetic, Numeric, Decimal, and two forms of Must-
Fill Date fields, Protected fields to show information but not allow updating, add-to and
subtract-from fields, and three special date fields. These allow for limited errors in
the entry of information into your fields, and can format the information into your
records.

The Report section is an extremely flexible in its formation. For each of the five
report formats that are available, you can assign titles for the headings as well as
automatic page numbering, 'Date Printed', and Sort Field Information.

You have two lines for titles and the above information, two heading lines to head the
information to follow below, and two lines to present the information from your records.
These reports can be up to 132 characters in width, and will, if requested, space between
each line of the report. In printing the reports, the program will automatically prompt
you for a 'control break field' to divide your report if wanted. If you are using
information you want totaled, Profile III+ will give a grand total at the bottom of-the
report.

Creating Labels is just like creating a mini-report. All the features are available, and
you have up to eight lines in each of your five label formats. One special feature I
like is the "Move-Over" indicator. This will move the information to the left of another
field and line it up only one space away, this looks great when first and last names are
next to each other and not spaces away. I use a label format for one of my Customer
Reports, as eleven six line labels fit on a standard page with room in between. I've
found this format a dream when the record has more characters than will fit onto two 132
character lines in a report format.

Another special feature is the Selection Formats to pass information from your records to
SuperScripsit and Visicalc. You can choose information to pass to these other programs
and put it into any sorted order you want. Form Letters are now a snap as you can send a
'custom' looking letter to any or all of your clients. As a mailing list package,
Profile III+ functions very well. For performing complicated mathematical functions, the
power of Visicalc can be utilized just by sending the base information to it in the form
of a label or number. A simple analysis of your information can sometimes show a hidden
trend in costs, sales, or orders.

The math package that is included in Profile III+ can solve up to 16 formulas, each using
up to 20 fields! Addition, subtraction, multiplication, and division are supported, and
your answers can be automatically placed into the correct field. You can also assign
'real' numbers, such as fixed percentages, to be used in your formulas, as well as
formatting the answer to integer or floating decimal place style. I found that you can
place a calculation into a dummy field number to allow more complex calculations, and
then move it back into the real field later.

Having the Runtime programs separate from the Creation programs will keep anyone from
changing passwords or gaining access to your sensitive information. The program will
note the password in upper and lower-case letters and WILL NOT substitute one for
another! The only way to bypass a password is to use the Creation Diskette to re-define
the format with a new password or none.

Killing a Data Base is easily done from either menu by pressing the 'K' key. This is not
a listed option on the menu as being a choice (good!) and will prompt you for the file
name of the file you wish to delete. Once you press the enter key after you specify the
file name, all portions of the file will be deleted! There is, unfortunately, no second

Page 28

prompt for verification of deletion, so you must be careful that you really want to
delete the file.

The manual for Profile III+ is very complete in presenting a lengthy sample use of the
package, with several examples and explanations. However, some of the more esoteric
functions, such as the extended selection mode are not explained to their fullest, and
the user must experiment to really understand the power of this feature. There are
several pages of instructions for backup and format of blank disks for use with program,
as well as hints and tips for usage.

This program is not a 'protected' package and allows for the user to make as many backups
as they feel comfortable with. It comes in a nice binder with the instructions printed
on good quality stock for long life.

I thoroughly recommend the package for anyone who has anything to keep in order. In our
company, we are using Profile III+ to track all of our business from the time we make the
bid, through receiving the order, manufacturing the products, through delivery, and to
track final billing. A complete business package designed around a single data base
management package - a clean, concise, and accurate solution. In combination with
SuperScripsit and Visicalc, these three packages make a powerful set of programs that
every business could use to promote computer use, save time, money, and put the time back
your day for coffee breaks.

I think I'll have a donut with this cup.......

Color Comes to the TRS-80's
by Scott A. Loomer

reviewed: CHROMAtrs Color Graphics System
$168 kit, $208 assembled and tested

Have you ever found yourself trying to convince a Apple owner that having a sophisticated
disk operating system was more important to you than color graphics? How would you like
to tell the next one you meet that you have the best microcomputer DOS AND color
graphics? If you feel inclined to turn the screw farther, you can also explain that your
color graphics are superior to an Apple's. Interested? Read on

At least two companies are now advertising color graphics add-on systems for the Model I
and III. This article will review the graphics capabilities, hardware and software of
the first of these companies to get its product on the market, specifically the CHROMAtrs
system from South Shore Computer Concepts, Inc., Hewlett, New York. The second company
that has recently started advertising a color board is Micromint, Inc., Cedarhurst, New
York. My remarks that deal with the graphics capabilities would apply to both systems
since they employ the same color graphics processor (CGP), the Texas Instruments 9918A.
If you are interested in more background information, I suggest that you read the article
on sprite graphics in the August 1982 Byte magazine.

Graphics Capabilities

Enough of the background; what are we talking about here? The graphics capabilities are
provided and managed by the TI CGP chip. Sixteen colors are available (counting
transparent, black, white and 13 others) which also provide eight discrete luminance
values (gray levels) if viewed on a black and white TV. The graphics capabilities of
this system can be thought of as consisting of three layers: the background, the pattern
plane and the sprites. The background forms a top and bottom border to the actual
graphics area (the screen is clipped top and bottom to make it more orthogonal). The
background can be set to any color which will also show through any portions of the
pattern or sprite planes that are transparent. The pattern plane is visually in front of
the background plane and is where high resolution graphics images can be created.

Page 29

The resolution of this plane is 256 picture elements (pixels) horizontally by 192 pixels
vertically . This resolution is the same as the Apple's; the TI CGP, however, has fewer
restrictions on the placement of colors. All colors are available anywhere on the screen
with the restriction that in eight contiguous pixels horizontally (a sliver) there can
only be two different colors. In practice, this does not greatly hamper your artistry.

The nearest visual plane is where the power of the TI chip really becomes apparent. The
system supports up to 32 prioritized sprites. A sprite is a pattern (either 8 x 8 pixels
or 16 x 16 pixels) that can be defined and moved as a single entity anywhere on the
screen. The sprites will appear in front of the pattern plane and will block out the
pattern plane image except in areas of the sprite that have been left transparent.
Animation of games becomes extremely easy. Merely define the shape of your hyper-megalon
infinite-probability space ship and you can move the entire ship by passing one address
to the CGP. When the image of the ship is moved, there is no effort necessary to restore
the pattern plane image where it had been covered by the ship as the CGP maintains the
image continuously. The sprites are prioritized which means that a sprite of higher
priority will superimpose a lower priority sprite. There are some limitations to all
this magic. Each sprite can only have a foreground and background (usually transparent)
color. Since only one address is necessary to move a sprite, two or more different
colored sprites can be combined to form an object and they can be moved apparently
simultaneously even from a BASIC program. Sprites can also be moved off of the edges of
the screen and will disappear line by line.

The graphics capabilities described above represent the highest resolution of the TI CGP
and is termed Graphics Mode II. There are three other modes of operation available,
Graphics Mode I (a more restricted version of Graphics Mode II), Multicolor Mode (low
resolution, 64 x 48 pixels) and a text Mode (24 lines of 40 characters). The other
graphics modes use less of the CGP's RAM and can consequently be loaded into the RAM
somewhat faster than Graphics Mode II.

Hardware Description

The CHROMAtrs system from South Shore consists of a peripheral that attaches to a Mod I
or III with ribbon cable to the system bus connector. The CHROMAtrs is powered by its
own power supply. The video output from the CHROMAtrs is available as a composite video
signal (for use with a monitor) or a radio frequency signal (with the optional RF
modulator) for use with a color TV.

The system also contains the 16K RAM used by the CGP to build and store the graphics
image(s) . The unit is port mapped to ports 78H to 7FH, but can be changed via jumpers if
this conflicts with other peripherals. The South Shore unit consists of a circuit board
approximately 9 inches square. The board is high quality with components nicely spaced,
silk screened and solder masked. The board has both 40 and 50 pin edge connectors so
that the same unit can be used with either a Model I or III (and presumably a MAX-80 via
the 40 pin connector). South Shore has added two nice embellishments to the graphics
capabilities of the TI CGP -- sound and joysticks. The sound capabilities are
rudimentary, but a wide range of tones can be created that are brought out on the board
to an RCA connector or can be heard on the audio of the attached TV set. The joystick
capability supports two Atari style joysticks or four game paddles. The joystick data is
read by doing an input from a port.

Construction of the kit form of the CHROMAtrs will not be difficult for anyone who has
built projects with integrated circuits. I must confess to have had an atypical
experience as I built the CHROMAtrs from the bare circuit board and not the kit. I did
this only because I already had purchased the TI 9918 chip in anticipation of building a
graphics unit from scratch. I DON'T recommend buying the bare board. South Shore's kit
price is very reasonable and I doubt if you could save money by buying the components
yourself; I didn't if you exclude the previously purchased TI 9918.

My construction of the unit probably represents an acid test of the instructions since I
didn't have their parts assortment. There is an addenda sheet which should be posted to

Page 30

the instructions prior to starting. There was only one inconsistency that I found; one
value of resistor was missing from the parts list and necessitated another trip to buy
them when I got to the installation step. I would make one suggestion for kit builders:
socket all of the IC's. South Shore provides sockets for the high cost chips (TI 9918,
RAM) but not the others. It may not seem to make sense to spend 30 cents to socket a 35
cent IC, but it will the first time you have to remove it (for whatever reason).
Socketing will also ensure that you don't damage an IC by overheating. It's well worth
the extra buck or two.

The caveat on kit building is, of course, that the darn thing may not work when you turn
it on. The troubleshooting instructions are minimal so it helps to:

1) have a lot of test equipment and the knowledge on how to use it or
2) have a good friend (Phil Docken in this case) who satisfies item 1.

I di d have some problems that Phil helped me fix, but all but one are attributable from
building the unit from the bare board and should not occur with the kit. The one problem
that you might encounter is that the unit as designed may be fussy about the TV set that
you use (symptom: black and white image, but no color). Phil talked with TI about the
problem and has designed a small circuit with trimming capacitor that replaces one of the
IC's and licked this problem for me. This is Phil's replacement circuit:

 C1
 8 7 8 ------|------)|-------|
 9 6 | |
 10 U 5 crystal |
 11 2 4 | C2 |
 12 1 3 9 ------|)/|------|
 13 2 | |
 14 1 |------)| |
 notch C3 |
 7

Parts List
Cl & C3 - 47 pf capacitors, Radio Shack #272-121
C2 - 5-60 pf trimmer capacitor, Radio Shack #272-1340

Instructions
1. Remove IC U21.
2. Build the replacement circuit on a small scrap of perfboard.
3. Attach jumpers from the connections marked 7-9 to the respective holes in the socket

for IC U21.
4. With the CHROMAtrs on, adjust trimmer capacitor C2 for the best color.

Software

Software frequently determines the value of any peripheral. Well, as they say, I have
some good news and some bad news. First some good news. South Shore provides a machine
language driver that provides set, reset, test, line drawing, sprite definition, joystick
and sound routines. The best part of this is that they supply the assembler source code
for their driver as well.

Now the bad news. The driver is what I've come to think of as T**DOS standard. It is
non-relocatable and uses the top 18k of memory! Give South Shore 10 brownie points for
protecting the driver by setting HIGH$, but take away 20 points because they set both the
Model I and III HIGH$ locations! When I called South Shore about this they were
surprised to learn that this is not a good procedure. They said it hadn't caused them
any problems under whatever DOS they had been using (I find that unlikely, as stuffing
random data into any area of the resident DOS has got to mess something up). I convinced
them that they should change it. The LDOS symptom was an inability to save programs from
BASIC.

Page 31

As stated, the other major problem with the driver is the loss of 18k of memory. It
turns out that the driver code itself occupies less than 2k, but the top 16k of memory is
reserved as a buffer for moving images into the video RAM. South Shore moves images (3
samples provided with the CHROMAtrs) into the video RAM by using the DOS LOAD command to
place the 16k image (saved as a load module) into the top 16k of memory. A PUT command
(supplied by South Shore) then merely moves the image into the external video RAM. This
negates the entire advantage in the CGP having its own dedicated RAM. The balance of the
software provided by South Shore consists of a BASIC program that has a line drawing demo
(the line function of the driver is fast) and a lunar lander game. The game is primarily
interesting as a demonstration of how sprites ease the programming burden so much that
you can write a real-time game in BASIC. My last comment about the supplied software is
to note that South Shore states that they will evaluate software that supports their
board and offer it on a commission basis to their users via a newsletter.

Now let's look at what can and has been done to improve the state of the graphics
software. Writing (or rewriting) a peripheral driver definitely makes one appreciate the
myriad features of LDOS.

My first effort was to eliminate the image buffer. A new DISPLAY program was written
that reads an image in as 256 byte blocks and transfers it a block at a time. This
program takes about 4 seconds to access the 16k file on disk and output it to the
CHROMAtrs. Parameters were also provided to set screen background color and to control
the blanking of an image during the loading. New sprite tables could be loaded in
without disturbing the displayed image for instance. The Z-80 OTIR command (block
output) works perfectly as it is just slightly slower than the TI CGP data capture rate.
Of course, that's at a Z-80 clock rate of 2 MHz. A delay loop would be required on a
MAX-80 or any system using a faster clock. A program called FETCH was written to
accomplish the opposite function, to grab an image out of the video RAM and save it to
disk.
The second step was to make the driver relocatable. Would you believe 140+ relocated
addresses? The article by Chuck Jensen on relocating code in the January 1982 LDOS
Quarterly was a boon here. It ought to be noted here that there isn't a single relative
jump in the entire South Shore driver (it turns out that all but two can be relative,
however). The driver advises LBASIC of its entry points by passing a base address via the
USTOR$ location provided by LDOS.

The third step was to make the driver initialization SYSGENable as was described by Roy
Soltoff in the October 1982 LDOS Quarterly. I've since decided to rewrite the entire
driver to include other functions (circles, filling areas, etc.).

There are many other exciting possibilities of this piece of hardware that I've not yet
had time to pursue. The video RAM might have other non-graphic potentials. For example,
how about a new version of the LDOS SPOOL command that uses the 16k of video RAM as its
buffer? This would be nearly equivalent to buying one of the dedicated printed spoolers
that typically cost about $159 for a 16k buffer. This way you would get color graphics
for "free". A MEMDISK type program could also be developed that would have little impact
on your main system RAM but would provide a transfer rate equal to a floppy.

If any of you now succumb to the urge to buy a CHROMAtrs and are interested in
cooperating on the development of supporting software, please drop me a line. I think
that the LDOS community is likely to take this peripheral far beyond the expectations of
its designers.

Final Impressions

I don't want to leave you with the impression that the South Shore software is no good.
With the exception of the HIGH$ problem, the software works as advertised. It just
doesn't meet the standards that we've come to expect under LDOS. The capabilities that
color graphics add to your system are tremendous. The dedicated TI CGP makes image
creation and manipulation quite simple and fast; for example, it is possible to do some
very credible programming using LBASIC because of this speed. The South Shore unit is

Page 32

well designed and reasonably priced (though you have to add some components up to get the
total costs):

Item Kit Built-Up
CHROMAtrs $99 $169
Case $18 included
Bus cable $14/15 $14/15 (Mod I/III)
RF Modulator $25 $25
Power Supply $12 included
 Total $168 $208

All in all, the CHROMAtrs is an inexpensive peripheral that will add color to your
life.

If you have any questions or comments about this article, please address them to:

Scott A. Loomer
315 Palomino Lane
Madison, WI 53705
608-233-7739 or MNet [70075,0933]

Since the preceding article was written in February, a few items need updating. First,
the driver software now provided by South Shore Computer Concepts has the HIGH$ problem
fixed. The new software comes with a BASIC program called MLOGO which is a creditable
interpreter of a subset of the LOGO language. All of those fancy pinwheel designs that
you've seen can now be yours. South Shore is also advertising a color graphics BASIC
(appends to the DOS BASIC) for $30. I haven't had a chance to try this out yet, but it
is supposed to be compatible with LDOS.

An additional piece of advice if you decide to purchase the ChromaTRS board is to order
the Texas Instruments manual for the 9918A ($5) from South Shore at the same time. This
recently printed manual gives precise details about what the chip can do and will allow
you to utilize the unit to its capacity.

As a note to the MAXers in the crowd, the ChromaTRS board does work with the Lobo MAX-80.
Two things must be corrected, however. First, the ground on the MAX-80 expansion BUS is
only brought out on one line. You must jumper it to the two other ground lines on the
ChromaTRS board. Second, the MAX is TOO FAST. The driver software must have delay loops
added to slow the data transfer rate down to the 2 MHz that the color board can handle.
I will provide the details on both fixes if you send me a SASE.

Last, I was chastised about my article on Alcor Pascal for not providing the company's
address (and by trans-Atlantic call yet!) so here it is: South Shore Computer Concepts,
1590 Broadway, Hewlett, NY 11557 (516-569-4390).

.......... er..........

by Earle Robinson
300 Grenola

Pacific Palisades, CA 90272

So many peop1e called in to LSI for the name of the pub1isher of the Plum book on 'C'
programming which I mentioned in my last article, that I am putting it here for whomever
may require it.

Learning to program in C
Plum Hall,

1 Spruce Avenue
Cardiff, NJ 08232.

Telephone:(609)927-3770

Page 33

Page 34

Please excuse the plug, but I should like to announce that I can now provide
SuperScripsit printer drivers for the Comrex, Diablo 630, Gemini 10, Gemini 15 & others
will be added to the regular line, which includes the MX80/100, Prowriter, Nec l023a, C.
Itoh Fl0, Qume, Brother. All drivers will run on the Model I, III, and the MAX80.

(Editor's note: We have been getting some of these inquiries. Please contact Earle
Robinson directly.)

The Model 4 has finally made its appearance, and in spite of the excellent operating
system written by you know whom (LSI), I was very disappointed in it. First of all, in
spite of the market's eager acceptance of more ergonometrically designed microcomputers,
especially due to the detachable keyboard, as shown in the IBM PC, the Tandy Model 12
among others, the new Radio Shack's offering is one big box. It is painted 'computer
room' white, but is the same clumsy looking machine that the Model III was. The Model 4
looks like a 1980 computer, not a 1983 one!

Secondly, Tandy has introduced the machine over a month before I began writing this
article, but there is still no technical manual available! Since a large number of early
purchasers of a new computer model are software houses, OEM companies, and others wishing
to develop programs or systems, how can they effectively do anything without technical
specifications, listings and the like? IBM issued their very complete Technical
Reference Manual, containing not only references, but a complete listing of the BIOS, at
the same time as the PC. Since the Model 4 has no software yet, except the new version
of Microsoft Basic, to run in the 6.0 mode (other than Misosys' excellent utilities), how
can Tandy expect to maintain its already shrunken market share?

Finally, it seems to me that the price of the Model 4 is on the high side in the present
market environment. It is possible to get much more for the money with say the Kaypro II
which costs over $300 less and is bundled with an excellent package of word processing,
dictionary, spread sheet, and two Basics. And, the Max80, with a couple of drives and a
video monitor should cost somewhat less, too. Further, it is already possible to run 80
columns on the Max under 5.1.x. In the Compuserve data base of the LDOS board there is a
driver which enables 80 columns. It works very nicely running EDAS, Lmodem80, and even
in Basic!

In an earlier article I bad-mouthed the Brother HR-1 because it was incapable of doing
anything else than print plain vanilla copy: no underlining, no bold, no superscript nor
subscript. Well, the Brother people have quietly replaced the original chip in the
printer so that it now does all those wonderful things. This means that if you are
attracted by this printer, you won't have to pay an extra $100 to get the Comrex, which
until now was the only way to have a Brother which would provide the underlining, etc.
For those of you who have an older version, I suggest you talk with your dealer about
getting the new chip installed.

Among the new products I have recently been able to try, I particularly liked two of the
programs on the LSI Utility disk #2. The first one is based on an old enhancement I did
for early versions of LDOS which permits re-defining keystrokes from within a KSM file.
For example, let us say that I am working on a program called 'Myfile'. By redefining a
key from within Basic or EDAS to output that name each time as required, I save time, and
avoid errors of misspelling which can occur. This program is called Ksmplus on the disk.
The other program is a very elegant filter for input or output to translate a user
defined key into a group of characters, up to 255 in length. This is a sort of expanded
KSM type filter which will permit translation of output of whatever you want from the
keyboard, a communications port, or any other device. Similarly, it can be used for
input translation into whatever you wish, to the video display, a printer, or whatever
device you wish. This program is called Maxlate. The concept is beautiful, and its
implementation ideally done.

I am enclosing a little program to change your prompt device from the 'LDOS Ready' which
we know so well. So, if you prefer a '%' or a '$' 1ike under Unix, or whatever, all you
have to do is type the command as you desire it. Use a '=' as the first character if you

Page 35

wish to suppress the 1ine feed which normally precedes the 'LDOS Ready' prompt. And, if
you wish to suppress the carriage return which normally follows the prompt, use the '='
as the last character. So, if you wish to have a '%' without linefeed and without a
carriage return you would type 'Prompt =% =' then hit <Enter>. That will give you the
prompt without a line feed and without a carriage return. Or, you could type 'Function:
', if you wish that as your command and wish to have both the linefeed and a carriage
return. To get back the 'LDOS Ready' merely type 'Prompt'. For those of you who may not
wish to type the hex fi1e below and then convert it, you may send me $10 and I'll send
PR0MPT to you, together with primitive instructions. I hope that I don't need to remind
you that you should NOT use this program with the SYS1 file on your Master diskette!

Until next quarter, when I hope to talk a little about UNIX, and what it may mean to all
of us. Perhaps, I shall have had the opportunity to meet some of you at the LSI open
house before you read this issue of the Quarterly.

05 06 50 52 4F 4D 50 54 01 02 00 52 22 68 53 11 99 53 21 D0 54 06 00 CD 24 44 C2 A2 52 01
03 00 CD 42 44 CD 36 44 CC 4D 53 11 6A 53 21 D0 53 06 00 CD 24 44 20 72 01 04 00 CD 42 44
CD 36 44 20 6D D5 16 0C 3A 67 53 B7 C2 53 53 06 FF 7E FE 4C 23 28 04 10 F8 18 63 7E 05 FE
44 23 20 EF 2B 2B 2B ED 4B 68 53 0A E5 03 FE 3D 28 03 23 0B 15 0A FE 3D 28 0C 77 23 03 FE
0D 28 08 15 28 42 18 EF 3E 03 77 E1 D1 01 04 00 CD 42 44 CD 3C 44 CD 28 44 20 21 11 99 53
22 D0 54 01 03 00 CD 42 44 CD 3C 44 CD 28 44 C3 2D 40 21 BA 52 C3 09 44 21 DA 52 C3 09 44
21 F1 52 C3 09 44 21 08 53 C3 09 44 21 21 53 C3 09 44 54 68 65 72 65 20 69 73 20 6E 6F 20
73 79 73 31 20 6F 6E 20 79 6F 75 72 20 73 79 73 74 65 6D 0D 52 65 61 64 20 65 72 72 6F 72
2E 20 20 41 62 6F 72 74 69 6E 67 21 0D 57 72 69 74 65 20 65 72 72 6F 72 2E 20 41 62 01 02
00 53 6F 72 74 69 6E 67 21 0D 54 68 65 72 65 20 69 73 20 6E 6F 20 6E 65 77 20 6D 65 73 73
61 67 65 21 0D 54 68 65 72 65 20 61 72 65 20 6F 76 65 72 20 31 30 20 63 68 61 72 61 63 74
65 72 73 20 69 6E 20 74 68 65 20 6D 65 73 73 61 67 65 0D 3E FF 32 67 53 C9 2A D0 54 ED 4B
68 53 E5 0A FE 0D C2 5B 52 01 C4 53 C3 63 52 00 00 00 53 59 53 31 2F 53 59 53 2E 45 5A 54
4F 3A 30 00
00 00 00 00 00 50 52 4F 4D 50 54 2F 43 4D 44 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0A 4C 44 4F 53 20 52 65 61 64 79 0D
00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 D3 00 54 00 00 00 00 00 00 00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 02 02 00 52

***** PARITY = ODD *****
(c) 1983 Tim Daneliuk, T&R Communications Associates

4927 N. Rockwell St., Chicago, IL 60625

This installment of PARITY = ODD marks one full year since I've been writing regularly
for the LDOS Quarterly. Since a good deal of my computer related work involves not only
program development, but technical writing ABOUT the industry, I decided to dedicate this
issue to a review of computer magazines!

A recent editorial in 80-U.S. Journal exhorted the readers to treat their magazines as
"peripherals". The writer had a point. A well conceived and produced magazine can serve
as a great teacher, and save you a lot of grief. On the other hand, magazine
subscriptions have been steadily increasing in cost. If you're like most microcomputer
users, you can ill afford to waste 20 or 30 bucks on something which doesn't meet your
needs.

I decided to evaluate the four magazines which are most likely to come to your attention
as a TRS-80 owner. Two are industry-wide journals, and two are specific to the TRS-80.

Page 36

In each case, I looked at three major areas in the evaluation: 1) Technical Depth /
Readability, 2) Timeliness of the magazine's contents, and 3) Quality of the product
reviews. The first point needs a little explanation. Merely because a magazine has only
tutorial material or deeply technical material doesn't necessarily make it bad. There is
a place in the magazine market for journals which are directed only to a very narrow
group of users. The real question is whether that magazine presents material appropriate
to their intended audience in a readable form.

I've also included the latest advertising rates for these magazines that I could find. A
magazine derives the lion's share of its income from advertising, not subscriptions. In
turn, these rates affect the cost of computer products we buy. I have quoted only the
"one time" rate for an ad, which is the most expensive rate there is. Keep in mind that
the more often a given ad is scheduled to appear, the lower the rate per publication
becomes. Finally, for those of you with an inclination to write, I've included what
payment for a typical article might be. This figure is based on my own experience in
working with these magazines.

BYTE
BYTE has been around longer than virtually every other microcomputer magazine. It
started out with a heavy emphasis on hardware "hacking", and some of this Emphasis still
remains. With the advent of "appliance" computers such as the TRS-80, Apple, and Pet,
BYTE's articles and reviews have changed to encompass these machines. Of all the popular
computing magazines, this one has the most technically thorough articles. If you enjoy
reading material dealing with abstract areas of computer design such as searching and
sorting algorithms, benchmark design, and interface standards, BYTE is for you. The one
objection I do have to these articles is that they tend to be very machine specific. I
would rather see a generalized article on writing efficient sorting algorithms than a
program listing of such a sort which only runs on a DEC 350, or a TRS-80, or whatever.
Articles which rely heavily on demonstrating a concept only by programming example
usually don't explain the concept itself very well. In general, BYTE articles are not
for the rank beginner. They assume some computer experience on the reader's part. Apart
from that, the writing is quite readable, and well edited.

In the area of timeliness BYTE falls flat on its face! I personally have had articles
submitted which took almost a year to get into print. I've also seen reviews published
in BYTE when the product in question was no longer being manufactured (i.e. the BASE 2
printer). The so-called "news" sections of this magazine are usually a minimum of 3-4
months behind what the industry is actually doing. In fact, I have NEVER read a news
item in BYTE's pages which had not already appeared in several other industry journals.

BYTE product reviews are probably the most comprehensive published. This does not
necessarily mean that they are good, they're just long! Time after time, I've seen
software reviews which contain a detailed description of every command in the product,
the command syntax, and a complete explanation of the product's installation procedure!
This is decidedly NOT what a review is supposed to be. These details are what the
instruction manual is for. A review should tell you what a product is supposed to do,
how well it does that task, the quality of the documentation, and whether value is being
delivered for the money. In my experience, reviews which go into endless detail usually
miss the point of a particular product completely.

In all fairness to BYTE, good reviews are hard to come by. For example, someone
reviewing a new 16 bit personal computer really should have experience with at least one
other similar machine so a basis for comparison exists. This is not usually the case, so
the review suffers somewhat. The only other choice the magazine editors have is to get
review samples of various machines and do the evaluation themselves. One thing that BYTE
could do to alleviate this problem would be to establish a set of uniform review
guidelines which all reviewers would have to follow. The one area in which BYTE reviews
DO excel is that of comparative reviews. Many magazines will not do a side-by-side
comparison of several similar products, perhaps in fear of losing advertisers. BYTE,
however, has no qualms about this, and several excellent comparisons of products have
been run in its pages in the past few years.

Page 37

 BYTE Summary
 ============
 TECHNICAL DEPTH: INTERMEDIATE TO ADVANCED
 TIMELINESS: EXTREMELY POOR
 REVIEW QUALITY: GOOD (But could be much better)

 Full page ad, 1 time: $5950 (Oct. '82 Rate Card)
 Typical Payment To Author: $50 per published typeset page

INFOWORLD
INFOWORLD is a relative newcomer to the world of computing magazines, but it already has
a prestigious reputation. This magazine is published every two weeks and makes no
attempt to be a "how to" magazine. You won't find articles on programming technique,
interface design, or the like here. Instead INFOWORLD concentrates on the news of the
industry. When new products are announced, you'll hear about them almost immediately in
INFOWORLD. There are also several columns which deal with trends in the industry as a
whole, as well as stories about people in the industry. The writing style is light and
eminently readable.

INFOWORLD seems to appeal primarily to people who USE their computers a lot, like
lawyers, accountants, and so on. It keeps them in touch with the latest products and
trends in the microcomputer industry. By its very nature INFOWORLD is an extremely
timely magazine. News items are right up to date, and you will often see things in
INFOWORLD which don't appear elsewhere for months. Their product reviews are generally
well chosen, and accurately reflect the present state of products available to the
consumer.

INFOWORLD is also THE leader in product reviews. All reviewers are given a set of
guidelines to which they must conform. Software is evaluated in the categories of
PERFORMANCE, EASE OF USE, DOCUMENTATION, and ERROR HANDLING. Hardware is categorized by
SETUP, EASE OF USE, PERFORMANCE, DOCUMENTATION, and SERVICEABILITY. Each review
concludes with a "Report Card" which rates each of these areas as Poor, Fair, Good, or
Excellent. No other magazine reviews have the consistency that INFOWORLD reviews have.
If you're considering a major hardware or software purchase, this is one resource you
shouldn't ignore.

 INFOWORLD Summary
 =================
 TECHNICAL DEPTH - None - News Magazine
 TIMELINESS - EXCELLENT
 REVIEW QUALITY - EXCELLENT

 Full page ad, 1 time: $3780 (Apr. 4, '83 rate card)
 Typical payment to author (review): $85

80-MICROCOMPUTING
80-Micro is a TRS-80 specific magazine, though it does occasionally address other brands
of computers. This magazine tries to address all segments of the TRS-80 industry. The
material ranges from tutorials to such complex areas as microprocessor emulation. This
is almost all "how to" material though. 80-Micro makes little attempt to deal with the
design of software and hardware, but rather presents the finished results.

A majority of each issue's program listings are available on cassette or disk to save you
the drudgery of typing it in yourself. This is a great idea, and one which more
magazines ought to follow. The writing style varies, but is generally acceptable for the
magazine's intended audience. There is one major problem with this magazine, however.
It has an editorial policy which not only enjoys controversy, but manages to create it as
well . This is in no small measure due to the publisher and owner, Wayne Green. Mr.
Green's editorials are generally full of shots at Radio Shack, the computer industry, and
almost everyone except Wayne Green Inc.! Now, there's no question that Radio Shack and
others occasionally have deserved a slap on the hand for a bad decision, but I find it

Page 38

difficult to believe that nothing good EVER comes from Fort Worth. I find these
editorials pompous, unsubstantiated, and hypocritical. For example, Mr. Green has on
several occasions taken Radio Shack to task for not offering enough value for the cost of
their products. Yet, if you look at 80-Micro itself, the value delivered is rapidly
decreasing. The subscription rate is being increased, but the number of pages per issue
appears to be decreasing! There is little here that you can't get in other magazines, so
I cannot recommend you spend you money to read Mr. Green's self-serving editorials.

Just like BYTE, 80-Micro gets a decided thumbs down in the timeliness department. The
"news" articles rarely are, and the main articles are often dated by the time they appear
in print. About the only up-to-date material you can rely on in 80-Micro are the product
reviews.

The reviews in 80-Micro are similar in form to those in BYTE. Each reviewer sets pretty
much their own approach to the product being reviewed so there is little correlation
between reviews written by different people. 80-Micro does publish comprehensive listings
of a given type of product from time to time, and these are quite good. For example,
reports on word-processing products and programming aids recently were published. I
found both of these articles informative, current, and truly useful.

 80-MICROCOMPUTING Summary
 =========================
 TECHNICAL DEPTH - "How To" Primarily/ Little Design Material
 TIMELINESS - POOR
 REVIEW QUALITY - FAIR to GOOD
 Full page ad, 1 time: $2395 (Jan. 15 183)
 Typical Payment to Author: $50 per typeset printed page

80-U.S. JOURNAL
80-U.S. is also a TRS-80 only magazine. Its thrust is primarily for the novice
programmer and newcomer to the world of personal computing. There is little here for the
intermediate or advanced user, but there is a WEALTH of information for the rank
beginner. If you are new to all this, 80-U.S. is an absolute MUST. You can learn more
in one issue of this magazine than you'll learn in weeks of "hacking" by yourself. The
writing style is direct, and delightfully simple to understand. Though the majority of
the material in 80-U.S. is "how to", there is also usually an article or two on the "why"
behind a particular TRS-80 feature or command. Most examples are done in BASIC, and 80-
U.S. hasn't forgotten that cassette only systems are still in use.

Insofar as 80-U.S. presents newsy material, it is fairly current. The first published
reports on the TRS-80 Model 100 and Model 4 were in 80-U.S., as were a string of Tandy
product announcements.

The reviews are usually also reasonably current. 80-U.S. has two types of reviews. There
is a collection of "mini" reviews in each issue as well as one or two in-depth reviews as
feature articles. I generally find these to be too superficial to be of any real help in
determining the value of a product. Several times I have seen reviews of products which
I KNEW were poor, but got passable ratings in 80-U.S. Here again, a set of uniform review
guidelines would help enormously.

 80-U.S. JOURNAL Summary
 =======================
 TECHNICAL DEPTH - NOVICE to INTERMEDIATE
 TIMELINESS - GOOD to EXCELLENT
 REVIEW QUALITY - POOR to FAIR
 Full page ad, 1 time: $1000 (Feb. 1, '83 Rate Card)
 Typical payment to author (article): $l00

SPENDING YOUR MONEY
In my estimation, everyone should get INFOWORLD. It is THE source for information about
the computer industry. If you're a beginner, you'll want to subscribe to 80-U.S. for a

Page 39

year or two, 'til1 you get your feet wet. There really is no good magazine for the
advanced TRS-80 programmer, so you're pretty much on your own if you're past the beginner
stage. Perhaps someone with a lot of cash would 1ike to start a new magazine?.....

THE "C" LANGUAGE (Part III)

by Earl 'C' Terwilliger Jr.
647 N. Hawkins Ave.

Akron, Ohio 44313

WELCOME back for Part III! As promised, the main topic for this article is operators.
The C language is very rich in its capabilities of data manipulation. Operators perform
this data manipulation. In the C language, operators are usually grouped into
categories. These categories (or types) are shown in a chart below.

Operators specify what is to be done to variables and constants. Operators, when
combined with variables and constants, are called expressions. When an expression is
followed by a semicolon it becomes a statement. In the next article we will see more on
expressions, statements and the logic control and flow in the C language.

Before I go on, I would like to clarify a few things you will encounter in the C
programming language in dealing with expressions and operators. Basically, these points
involve the concepts of]value, rvalue, "side effects" and type conversions.

An lvalue (left hand value) is an expression which references storage in the computer.
In C, an object is a manipulatable area of storage. An lvalue is an expression which
refers to that object. An lvalue is the only value which can be on the left side of an
assignment statement. An lvalue or an rvalue can be found on the right side of an
assignment statement. An expression which is not an Ivalue is sometimes called an
rvalue. An rvalue doesn't refer to an object (area of storage). An example? Consider
the following C statements:

 int c;
 c = 0;

For Z80 based machines, if the HL register pair was used to obtain the value of c from
the stack, you might see the following instruction (among others) generated as a result
of compiling the above C statements:

 LD HL,O ;Load HL pair with 0

The 0 is contained in the instruction and doesn't take up any data storage. Side effects
come into play when there are no explicit C rules as to how an expression is to be
evaluated. In this article, a chart is used to summarize the rules of precedence and
associativity for the various operators.

If no rule of evaluation applies, the C compiler is free to evaluate an expression or
subexpressions as it sees fit. The results (expected or not) are called side-effects.
To overcome side-effects, break up larger expressions or statements and use explicit
"temporary" lvalues.

When expressions involve arithmetic with different data types, a conversion (or
promotion) to a common data type occurs. Since both data types are of a common type, the
result is also of that type. Since "lower" data types are converted to "higher" types,
the process is called promotion. Of course there is a set of rules for this conversion
or promotion. The "ladder of promotion" (if I can be allowed to invent a phrase) is
shown to illustrate this promotion:

Page 40

 double
 float
 unsigned long
 long
 unsigned int, unsigned short
 int, short
 unsigned char
 char

Besides arithmetic expressions, type conversions can take place when a function is
called. After all, a function argument is an expression. Conversions can also take
place across an assignment statement. When this happens the value on the right side is
converted to the type on the left side. The above promotions can occur or the reverse
process can also occur. (Demotion!) A word of caution! The C language guarantees any
character in the machines standard character set will never be negative when used in
arithmetic expressions. However, C does not specify whether variables of type char are
signed or unsigned. So, be careful when using various bit patterns (other than the
standard character set) because you may be dealing with negative values. Later, we will
see how to force a type conversion using the cast operator.

Now that these points have been mentioned, let's get back to more on expressions. As an
expression is evaluated , there is a precedence or order of evaluation. It is important
to know the order of evaluation when the different types of operators are combined in an
expression, especially if you want a correct result! Below is a chart of the operators
available in C. It shows the relative order (level) of precedence, and the associativity
of operators of equal precedence. The associativity is given to show how expressions are
evaluated if operators of an equal level of precedence are found side by side in the same
expression. (You saw the following chart in Part II.) It is repeated here with examples
of each operator and sample expressions.

Operators Level Type Associativity

() [] -> 15 Primary left to right
! ~ ++ -- - 14 monodactic right to left
(type) * & sizeof 14 monodactic right to left
* / % 13 arithmetic left to right
+ - 12 arithmetic left to right
<< >> 11 shift left to right
< <= > >= 10 relational left to right
== != 9 relational left to right
& 8 bitwise logical left to right
^ 7 bitwise logical left to right
| 6 bitwise logical left to right
&& 5 logical left to right
|| 4 logical left to right
?: 3 conditional right to left
= += -= *= /= %= 2 assignment right to left
|= ~= &= >>= <<= 2 assignment right to left
, 1 comma left to right

Since variables must be declared before they are used, I will declare a few so they can
be used in our sample expressions.

 int a, b, c, d;

Variables can be initialized in their declaration statement. As you might guess, an
operator (the equals sign) is needed to accomplish this. For example:

 int a = 10;
 int b = 5;
 int c = 2;

Page 41

An easier way to initialize the above variables is:

 int a = 10, b = 5, c = 2;

(Well... anyway it takes less lines in your program.) To accomplish the initialization,
the variable name is followed by an equals sign and a constant. The constant's value
serves as an initializer. Multiple initializations can be performed in a single statement
(as is done above) when separated by a comma. The comma, used in this way as a
separator, is not an operator and does not mandate the rules of evaluation as does the
comma operator. Some variable types, external and static, are automatically initialized
to zero by default of the C compiler. However, as stated by K&R, it is better
programming practice to state their initialization anyway. If automatic variables are
not initialized, their values will be of an undefined value. (Garbage!) You should note
that for external or static variables, the initialization is done only once.

For automatic variables which are initialized in a function, they are re-initialized each
time the function is called.

I may need to declare a few more variables to illustrate all of the operators. However,
I will do so when each individual operator is introduced. Let's begin!

Operators Level Type Associativity

() [] -> 15 Primary left to right

printf("C is a very useful language to know!\n");
The () is called the function call operator. The left and right parentheses separate any
optional arguments passed to the called function.

char buffer[100]
The [] operator(s) is used for arrays. In this example, an array of characters, whose
name is buffer, is declared to have 100 elements. The [] is used to reference (index or
subscript) elements of the array. In this example, the elements are buffer[Ol thru
buffer[99]. In C the index starts at 0. Be careful about your use of these subscripts,
since the C compiler does not check to see if the subscript you use is within the bounds
of the array.

struct date { int month, day, year;} birth;
 struct date *pdate;
 pdate = &birth;
 birth.month = 10;
 pdate->day = 3;

The . and the -> (period and arrow) operators are used when dealing with structures. The
"." operator is called the structure member operator because it connects the structure
name and a member name. Pointers to structures are very frequently used, due to the
restrictions imposed by the C language. These limitations imply that structures are not
to be dealt with as a single unit. This limitation does not hold for pointers to
structures. Therefore a shorthand operator, ->, is used to make pointers to structures
and structure members easier to use. In the examples above, birth is a structure of type
date, month and day are members of the structure and pdate is a pointer to a structure of
type date. More later on structures! (As you can see, we haven't yet discussed the * and
& operators!)

Operators Level Type Associativity

! ~ ++ -- - 14 monodactic right to left
(type) * & sizeof 14 monodactic right to left

Page 42

All of these operators are unary or monodactic operators. This means they need only one
operand.

!a
The truth value of a is reversed. If a was TRUE (non-zero) it is now FALSE (zero). If a
was FALSE it is now TRUE. Since I declared a to be 10 earlier, after the !a, the result
returned will be FALSE (zero).

~a
The one's complement of the operand a is returned. Just invert each bit of the operand.
If a bit was a one switch it to a zero and if the bit was a zero switch it to a one.

++a --a a++ a- -
These are the increment ++ or decrement -- operators. They may prefix or postfix the
operand. If the operator prefixes the operand, its value is taken after the increment or
decrement. If the operator postfixes the operand, its value is taken and returned by the
expression before it is incremented or decremented. These operators do not necessarily
mean to add 1 or subtract 1 from the operand. The increment or decrement value is based
upon the storage TYPE of the operand!

-a
This is the unary minus operator. It reverses the sign of a. After -a, since a was
declared to be 10, the result is now a –l0. (There is no unary + operator.)

myfunc((double) c);
The variable c was defined as an integer above. If the function myfunc() needs to be
passed a double precision floating-point variable, c can be coerced into that type. This
construct of forcing a variable into another type is called a cast. In this example, c
is cast into type double.

char name[30];
name = "Earl C. Terwilliger Jr.";
char *ptr;
ptr = &name;

The & operator obtains the address of an object. (The & operator applies only to
variables and array elements.) The * operator precedes an operand containing an address.
This address is then used to fetch the data stored there. A lot more will be said about
these operators when pointers and arrays are discussed in greater detail!

sizeof(a)
This operator returns the size of any object. The value returned is determined by the
number of units contained in the object. Each "unit" or "byte" has the same relative
size as type char.

Operators Level Type Associativity

* / % 13 arithmetic left to right
+ - 12 arithmetic left to right

d = a * b; /* a multiplied by b */
d = a / b; /* a divided by b */
d = b % c; /* b modulus c */
d = a + b; /* a added to b */
d = a - b; /* b subtracted from a */

The *,/,+,- operators perform the arithmetic functions of multiplication, division,
addition and subtraction respectively. Since integer division in C truncates the
fractional part, use the % or modulus operator to obtain the remainder. (% can not be
applied to float or double operands.) (Note that parentheses are also used around

Page 43

expressions to specify order of evaluation. Watch out! The C compiler can sometimes
rearrange a parenthesized computation. For some associative and commutative operators
(remember your arithmetic for * and + ?) the C language does not specify the order of
evaluation. Use explicit temporary variables to overcome this, if in fact this re-
arrangement makes any difference.)

Operators Level Type Associativity

<< >> 11 shift left to right

a >> 2 /* a shifted right by 2 bits */
b << 4 /* b shifted left by 4 bits */

These shift operators perform left and right shifting of the bits in their operand. The
number of bits shifted is the right operand. When an operand is shifted left, vacated
bits are filled with a 0. Right shifting an unsigned operand causes the vacated bits to
be filled with zeros. Right shifting a signed operand may be an "arithmetic" or
"1ogical" depending on the machine and the C compiler.

Operators Level Type Associativity

< <= > >= 10 relational left to right
== != 9 relational left to right

a < c /* a less than c */
a <= c /* a less than or equal to c */
a > c /* a greater than c */
a >= c /* a greater than or equal to c */
a == c /* a equal to c */
a != c /* a not equal to c */

Each of these operators takes two operands and returns the result TRUE or FALSE (1 or 0).
The result is based upon the relationship of the two operands. (Note: one of the more
frequent errors by new C programmers is the failure to differentiate the == operator from
the = operator. The == operator tests for equality while the = always sets equality.)

Operators Level Type Associativity

& 8 bitwise logical left to right
^ 7 bitwise logical left to right
| 6 bitwise logical left to right

a & Ox0f /* a bitwise ANDed with Ox0f */
a ^ OxfO /* a bitwise XORed with OxfO */
a | Ox01 /* a bitwise ORed with Ox01 */

These operators provide C the capabilities of bit manipulations. Bits of the left operand
can be ORed, ANDed or exclusively ORed by bits in the right operand.

Operators Level Type Associativity

&& 5 logical left to right
|| 4 logical left to right

&& and
|| or

Page 44

These operators logically connect their operands. (They should not be confused with the &
and | bitwise operators.) These operators can be used to connect expressions. For
examples:
(a == 2) || (a == 3)
(a != 0) && (c == 2)

Operators Level Type Associativity

?: 3 conditional right to left

(a == b) ? (c = 1) : (c = 2)

This ?: construct is a ternary (three) operator. It provides an alternative to the IF .
. . THEN ... ELSE . . . type logic. If the expression to the left of the ? is TRUE then
the expression immediately after the ? is evaluated. If it is false then the expression
after the : is evaluated.

Operators Level Type Associativity

= += -= *= /= %= 2 assignment right to left
|= ~= &= >>= <<= 2 assignment right to left

a += 1 /* Add 1 to a */
a -= 3 /* Subtract 3 from a */
a *= 5 /* Multiply a times 5 */
c /= 2 /* Divide c by 2 */
c %= 2 /* Store remainder of c/2 into c */
c |= Ox80 /* c is bitwise ORed with Ox80 */
c ^= OxO2 /* c is bitwise XORed with Ox02 */
c &= Oxf0 /* c is bitwise ANDed with OxfO */
c >>= 2 /* c is shifted right 2 bits */
c <<= 4 /* c is shifted left 4 bits */

These operators represent the assignment operators. They were seen before without the
equals sign. They make expressions such as: a = a + 1 much easier when written as: a +=
1 . Usually the resultant assembler (machine) code produced as a result of these
operators is more efficient too. They are especially helpful if a long complicated
expression is on the left of the = and needs to be used to the right of the =.

Operators Level Type Associativity

, 1 comma left to right

The comma is used in C as punctuation. It is seen separating expressions in declarations
and it is seen separating arguments passed to functions. The comma separator is
different from the comma operator. The comma operator is usually found used in a for
statement. An example of a 'for' expression? OK!

for (i = 1, j = 2, c = 3; i != 50; ++i)

In the next article, I will be discussing the logic of a C program (the control and flow
of how and in what order computations are done). Until then, read some more of K&R and
the rest of the LDOS QUARTERLY!

Page 45

ITEMS OF GENERAL INTEREST

There is a possibi1ity of misunderstanding the PDSHELP/FIX patch that was in the PDS
article in the January 1983 Quarterly. This patch is to be applied to a new PDS after
you have created it with the BUILD command. - Scott Loomer -

Since the January 1983 Quarterly article was written, Alcor has introduced version 2.0 of
their Pascal system. The upgrade cost to current owners is $21 which includes new disks.
Briefly, these are the enhancements in version 2.0. The Pascal functions GET and PUT have
been added (the only Jensen and Wirth langauge standards that had been missing). The
flag register status is now returned in the machine language CALL. The procedure to
internally define file names has been simplified. Random access files are now supported.
The additional compiler options INCLUDE, LIST, PAGESIZE, WIDELIST RANGECHK and PTRCHECK
have been added. The LOCATION function will now work with procedures as well as
variables. The linking loader will now accept lower case. The error in subrange
variables has been corrected.

As is typical , just prior to getting the update announcement, I had just finished
patches to version 1.2 to allow 1ower case filespecs in all modules. After I've examined
2.0, I wi11 submit any of the patches that are necessary to ensure complete lower case
compatibility. - Scott Loomer -

Patches, patches, patches

The following is a mandatory patch to FORMAT/CMD. This is for all versions of FORMAT
produced with file dates before 06/l0/83. This patch is the same for al1 5.1.3 releases,
and is the same for Model 1, Model 3, and MAX-80.

. FORMATC/F3X - 06/08/83

.

. Corrects problem with setting "D" BEFORE calling

. SELECT so the FDC driver can properly deal with precomp

.
X'60DF'=8B 67
X'6OE5'=08 64
X'678B'=FD 56 05 C3 F4 63
.
. EOP

Optional Patches

. Patch to Enhanced VisiCalc to remove parallel printer ready check

. this is necessary if the *PR device is routed to a serial printer

.

. original contents was: 3A E8 37

.

. Patch for version VC-150Y0-T83
D55,2C=AF C9
.
. Patch for version VC-160Y0-T83
. D55,4D=AF C9

. Patch to extend the keyboard debounce time for 'problem' keyboards

. NOT for MAX-80

. file to patch is: KI/DVR original contents was: 03

.

. for Model 1
D01,A9=04
.
. for Model 3
. D01,AC=04

Page 46

. Patch to disable the Model 3 external I/O bus on boot, if non-standard

. peripherals are causing a problem. Do NOT use this patch on a

. hard disk system

.

. file to patch is: SYS0/SYS original contents was: 38
D0D,20=28

. Patch to use "." rather than "/" and ":" on bootup DATE and TIME prompts

. NOT for MAX-80

. file to patch is: SYS0/SYS original contents was: "/" and ":"

.

. Model 1
X'4EB8'="."
X'4FA5'="."
.
. Model 3
. X'4EB9'="."
. X'4FA6'="."

. Patch to allow LPRINT TAB past position 63 (up to 127)

. this patch is for MAX-80 ONLY!

.

. file to patch is: SYS0/SYS original contents was: 3F

.
X'213B'=7F

. Patch to force lower-case driver on boot. This is necessary on some

. non-RS type lower-case mods

. this patch is for Model 1 ONLY

.

. file to patch is: SYS0/SYS original contents was: 2V 06

X'4E36'=00 00

LET US ASSEMBLE

by Rich Hilliard

Welcome back. Last issue we listed several methods of working on your ego so that along
with assembly language expertise, you could become (as is normally the case) an
insufferable egomaniac at the same time. Several letters from Country & Western Fans
pointed out that C & W people may substitute the song "It's Hard to be Humble" rather
than "Nobody Does It Better". I agree that this is a fine substitution. Broadway buffs
may substitute "C'est Moi, C'est Moi" (It's me, It's me) from Camelot and classical fans,
the theme from Beethoven's "Eroica" (The Hero) symphony.

Lawrence Welk fans may simply pick up their Model III computer sideways (which then looks
like an accordion), and do a Myron Florn imitation. (Anyone thinking that more than three
minutes of accordion music is entertainment MUST be an egomaniac.)

By the way, if after reading this series of articles you still cannot grasp assembly but
you have participated in the ego exercises, you can always write reviews. If you cannot
do anything you can always become a computer salesperson, or if you are a complete idiot,
you already have sufficient background to be either a computer consultant or a systems
analyst. So fear not and forge ahead! The computing industry has a place for everybody.

Page 47

If the computing industry is a "melting pot", just consider mother nature. The evidence
is overwhelming that nature looks upon all her children equally - - as a quick meal; or
why else is humanity nothing more than a protein bag stretched over many pounds of
obscene glop.

To those who find it hard to believe in mankind as a quick lunch, I point to the so
called loyalty of man's erstwhile "best friend", the family dog. If humanity is not a
tasty morsel, then why do they always try to lick us?

Well now that the fun is over let's get to work. In the last issue we wrote the
following:

00100 ORG 5200H ;define entry
00110 LD HL,HELLO ;point to message
00120 CALL 4467H ;print it
00130 JP 402DH ;return to system
00140 HELLO DB 1CH,lFH,'HELLO I AM YOUR TRS-80 COMPUTER',ODH
00150 END 5200H

To see it execute after assembly, at LDOS Ready merely type "PRINT" and the screen will
clear and print the message defined in line 00140.

Assembler, or for that matter, any compiled language, has a tremendous disadvantage in
not being capable of halting any run to examine for problems. For this reason, a class
of "monitor" program such as DEBUG is very handy. Let's examine PRINT/CMD under the LDOS
system DEBUGger. Switch on DEBUG by typing its name at LDOS Ready. Unlike most
programs, DEBUG will not execute immediately. To remove other memory clutter, do a
MEMORY (C), before entering DEBUG. After switching on DEBUG, it will activate mostly by
executing a user (non-system) program or by pressing the <BREAK> key. To DEBUG
PRINT/CMD, type "PRINT" at LDOS Ready. Do this before going farther (don't cheat either;
we have ways of making you DEBUG).

Down the left side of the video are the twelve paired/16-bit registers commonly used in
the Z-80. The next two columns after the equal sign display the contents of each eight
bit register separately. The four lowest registers are normally not addressable by less
than 16 bits at a time (but they can be "fooled", which we will get into a dozen or so
articles from now). Since our PRINT program has just started, our code has affected only
one register. Notice that the PC register contains 520O which points to the next
instruction to fetch from memory and execute.

After the register contents is a "=>" followed by 16 bytes of information. This "=>"
symbol shows what each pair "points" at in memory. You can now see the difference
between the register contents and the pointed-to address. The PC register contains the
value 5200 and points to the value 21 in memory. All of these values are in hex, by the
way. If you look at the assembly listing from this program in the last issue, you will
note that the assembler's first columns read like this: 5200 210952, which you recall
means that there is a 21 at 5200, a 09 at 5201, and a 52 at 5202. Looking past the 21
that PC points to, you can see the remaining bytes of code in the same horizontal row.

Now I draw your attention to the last four rows of the video. These display any 64 bytes
in memory. To see the rest of our program, type "D 5200<ENTER>". This points the lower
"D"isplay to 5200 through 523F. If you cleared memory before entering DEBUG, you can
readily see the entire PRINT program, all 43 bytes of it, ending with the OD at 522B. (If
you did not clear memory, take out a flexible plastic object and smack yourself
repeatedly across the knuckles for not following instructions. This simulates a quality
education and tenderizes your hand for Rover.)

To proceed as if the code really were executing, DEBUG provides the "I" and the "C"
commands. The difference is that "I" executes one instruction at a time but "C" will

Page 48

perform a CALL instruction as a single step. This has an advantage. Recall that we CALL
@DSPLY (4467H) in this program. We know that the system call involves all the code
necessary to print our sentence to the video. We can bypass the tedium of this routine
with the "C" instruction since we are only interested in our own code. It should also be
noted that DEBUG will not single step through ROM, and that if a call to a ROM routine is
made by the system, a "C" must be used.

Press the <C> once. (If pressed twice please revert to flexible plastic discipline
unless, of course, you enjoy it in which case cut yourself off for a month.) Notice that
the PC now contains 5203 which points to the next instruction, CD. Note that the HL
register now contains 5209. Our first instruction has been executed. The assembler
converted the label "HELLO" into the address 5209.

Press the <A> key. This turns the right side of the screen to an "A"SCII display. Now
look at the HL register. The contents of HL points to the screen message. The two dots
preceding the message are non-ASCII characters. Pressing the <H>, for hex, key will
convert the display back to hex, although you may run under either mode. Press <C> again
and the video will flash, the PC contains 5206 and is pointing to C3. Our system call to
@DSPLY has been performed and control returned to DEBUG. The message cleared the screen,
printed, and re-printed the DEBUG display so quickly that we could barely notice the
effect. Using DEBUG to examine video results is, therefore, done on a theoretical level.

The last command we will examine for now is the "G" or Go command. Leaving DEBUG is
accomplished by means of the Go command. We can exit by typing G 402D. This is a jump
to the @EXIT system vector which also happens to be line 00130 of our PRINT program.
Typing G alone wil1 cause the program to continue normal execution. In this case we
conveniently are a1ready returning to LDOS Ready, so simply do a "G<ENTER>" and turn off
the debugger by typing "DEBUG (N)<ENTER>" at LDOS Ready.

You can explore the rest of the debugger on your own. This cursory explanation was to
show you the most used features in order to assist you for the first time. Other system
monitors worthy of note which provide many features beyond DEBUG are: UltraMon and Macro-
Mon.

Sorts Illustrated.

Now for some real fun. Did you ever wonder (wonder should be a trademark of Creative Use
of Glue in Preposterous Bread Commercials, Inc.) why SORTS have such bizarre names such
as Ripple, Bubble, and Shell. It probably is do to the "action" caused by the code in
memory causing a ripple or bubble effect to occur. The shell effect is interesting
because if you put your ear on a RAM chip while the shell sort is running, you will hear
nothing and most likely burn your ear. Since the TRS-80 video is RAM memory mapped, the
effects can be observed by sorting ONE character arrays directly in video.

We will examine both the bubble and shell sorts in TBA source code as well as assembler.
Stay tuned for an announcement regarding the ripple sort.

The bubb1e sort takes a list of objects and compares them two at a time. If the order is
incorrect, the two objects are exchanged. The next pair of objects is then examined and
so on until the entire list has been examined. Obviously, it requires several passes,
before the list is entirely correct. A flag is reset prior to every pass and set if any
exchange occurs. The process is repeated until a pass is completed without the flag
being set. This indicates that no exchanges took place and, therefore, the list is now
ordered. The effect of this sort is that the "light" stuff drifts to the top and the
"heavy" stuff sinks like a rock. The TBA listing is : (for those of you who do not have
TBA, I will translate this one time that you may see the folly of not possessing it.)

I think you wi11 find it easier to fo11ow the 1ogic of the TBA code rather than the old
fashioned straight BASIC. (and now a message from our sponsor ... TBA is available for
$69.00 in the 5.1 version ... and now back to our program).

Page 49

=FLAG%,LOOP%,TEMP%,LOOPl%
'Fill half screen with random data 33 to 127
 CLS 3 CLS
 FOR LOOP%=15360 TO 15872 4 FORLO%=15360T015872
 POKE LOOP%, RND(95)+32 5 POKELO%,RND(95)+32
 NEXT LOOP% 6 NEXTLO%
'Reset flag and scream through data
 swapping as necessary
@ORDER.DATA
 FLAG%=0 9 FL%=0
 FOR LOOP%=15360 TO 15871 10 FORLO%=15360TO15871
 LOOP1%= LOOP%+1 11 LP%=LO%+1
 IF PEEK(LOOP%)<=PEEK(LOOP1%)
 THEN @SKIP.IT 12 IFPEEK(LO%)<=PEEK(LP%)THEN18
 TEMP%=PEEK(LOOP1%) 13 TE%=PEEK(LP%)
 POKE LOOP1%,PEEK(LOOP%) 14 POKELP%,PEEK(LO%)
 POKE LOOP%,TEMP% 15 POKELO%,TE%
 FLAG%=1 16 FL%=1
@SKIP.IT
 NEXT LOOP% 18 NEXTLO%
'Loop and try until no swaps occur
 IF FLAG% THEN @ORDER.DATA 20 IFFL%THEN9
@LOOP: GOTO @LOOP 21 GOT021

This program sorts 512 items and takes more time than drinking hot coffee even with a
loose filling. Our assembler version will sort 1024 items in several seconds. First, we
need to know another pseudo-op. This is EQU or equate. We will start the program at 5200H
and the first four lines are

00100 ORG 5200H
00ll0 VIDEO EQU 3C00H
00l20 @EXIT EQU 402DH
00130 @KEY EQU 0049H

The equate sets the symbol in the label zone equal to the value/expression specified.
This means that we can now substitute the term for the number as in CALL @KEY, etc. Our
first task is to get the "random" data to the screen. There are several complicated
algorithms for accomplishing this but they are not necessary here. Someday if we write
some stupid game it may be necessary to deal with it. The idea is to scream through
memory and locate characters in the range of ASCII 33 through 127 and reject everything
else. To do this we need the equivalent of IF ... THEN or a conditional branch.

The Z-80's F register contains flags used to indicate conditions that occurred in the
last completed instruction. Some instructions do not affect flags at all. In the F
register, bits 7, 6, 4, 2, 1, and 0 are used for flags. (Bits 3 and 5 are not used.) The
conditions can be used in conjunction with CALL, RET (RETurn), JP, and JR (Jump Relative)
to either GOSUB, RETURN, GOTO, or "kind of goto", on a conditional basis. CALL and JP
were covered in the last session. RET is simply a RETURN from a subroutine. JR has no
exact analog in BASIC except it is another form of JP. The advantage is that unlike a
jump (JP 402DH), JR requires no address but the jump must be in a range from -126 to +129
(effectively) from the instruction. In other words, it must be close. As you will see
from the code below, it is usually referenced by a label which the assembler converts to
the relative jump location. This is like saying GOTO ten lines ago or GOTO fifteen lines
ahead. It executes slower than a jump but takes 1 byte less of code. Its primary
advantage is that unlike a JP, it does not need to have the modifying address changed if
the code is relocated. However, it does not have all of the branch conditions available
to it.

A conditional branch in assembler means "Execute the instruction only if this condition
exists" to the Z-80. JP Z,402DH means GOTO address 402D if the Z flag is set. The
conditions can either be met or excluded in that every flag has its opposite

Page 50

conditional branch. JP NZ,402DH means GOTO address 402D if the Z flag is NOT set. We
will discuss the flags in detail as we need to.

Briefly, they are as follows:
 C - NC = Carry Flag Set/Reset (bit 0)
 PE - PO = Parity Set/Reset (bit 2)
 Z - NZ = Zero Set/Reset (bit 6)
 M - P = Sign Flag Set/Reset (bit 7)

Now let's fill the screen (memory) with characters,

00l40 LD HL,4000H ;start anyplace, actually
00150 LD DE,VIDEO ;point DE to video RAM
00l60 GETCAR LD A,(HL) ;get a byte into A from HL address
00l70 CP '!' ;char < !

The A register is used for most math functions. The CP (ComPare) instruction performs a
subtraction which throws away the result but leaves the flags affected as if the
subtraction took place. This is how A is tested for its contents. Let us assume a value
X for the following chart of comparisons utilizing the instruction CP X:

 Relationship: Branch Flag When to go
 if A < X C then go on C flag
 if A <= X C or Z then go on C (if less) or Z flag (if equal)
 if A = X Z then go on Z
 if A <> X NZ then go on NZ
 if A >= X NC then go on NC
 if A > X NZ & NC then go on both NZ and NC (this is tricky)

X can be another eight bit register, a number (0-255), (HL) or (IX/Y +d). The last we
will discuss in the future. It can be seen that we want characters greater than or equal
to an '!' (ASCII 33) and that if A >= !, then we want that character, but only if it is
<= ASCII 127, so the remaining selection code is as follows:

00l80 JR NC,TEST ;if A >= ! then test further
00l90 INC HL ;point to next memory location (INC) functions
 ;like this : HL = HL + 1
00200 JR GETCAR ;Jump back to line 160 (GETCAR)
00210 TEST CP 7FH ;is char <= 127
00220 JR C,OK ;char < 127, go
00230 JR Z,OK ;char = 127, go
00240 INC HL ;as above
00250 JR GETCAR
00260 OK LD (DE),A ;put A into memory pointed to by DE
00270 INC DE ;point to next place to write
00280 BIT 6,D ;test for end of screen
00290 JR Z,SORT ;if D=40H we are at end of video plus 1
00300 INC HL ;as above
00310 JR GETCAR

It should be noted that when a LD A,(HL) is performed, that neither of the contents of
the H nor the L register are placed in A. Rather the one byte contents of the ADDRESS
pointed to in the HL pair is loaded into A. Similarly, the LD (DE),A does not affect D or
E but does write the contents of A to the memory location pointed to in the DE pair. Note
the use of conditional branches to hop around to the desired spots. Another test which
can be performed on a register is the BIT test in line 00280 above. The video screen
occupies memory from X'3C00' (15360) through X'3FFF' (16383). The upper limit of video
ram looks like this 0011 1111 in D, and 1111 1111 in E. Adding 1 to this number yields
X'4000' (16384) or 0100 0000 in D, with E containing all zeros. Therefore, when bit 6 of
the D register is not zero (NZ) we no longer need to loop because the screen is full.

Page 51

We can now sort the data as we did in lines 9 through 21 of the BASIC program.

00320 SORT LD HL,VIDEO ;point HL to screen start
00330 LD C,0 ;C register is our flag
00340 SORT1 LD D,H ;point DE at HL + 1
00350 LD E,L
00360 INC DE
00370 LD A,(DE) ;get DE's pointed character
00380 CP (HL) ;if (HL) <= A then skip it
00390 JR NC,SKIPIT
00400 LD B,A ;this starts the exchange A has (DE) value
00410 LD A,(HL) ;xfer A to B and get (HL)
00420 LD (DE),A ;swap characters
00430 LD (HL),B
00440 LD C,l ;a swap a swap, mark it!
00450 SKIPIT INC HL ;advance
00460 BIT 6,H ;check for finish
00470 JR Z,SORT1
00480 INC C ;passover I mean pass over check for C being a
 ;zero which means no swap occurred on last pass
00490 DEC C ;this sets Z flag if C was zero but not if C was 1
00500 JR NZ,SORT ;try another pass
00510 CALL @KEY ;entry point which waits for a keystroke
00520 JP @EXIT ;back to LDOS Ready
00530 END 5200H

DEC is the opposite of INC, so that in line 00490 C = C - 1. Why this manipulation? The
LD instructions do NOT affect the flags, but on single registers, if the result of a DEC
is a Zero, then the Z flag is set. At the end of a pass C contains either one or zero.
If a swap occurred, C is loaded with one. At the end of the pass, C is INCreased to two
and DECreased back to one which does not set Z. Therefore, a JR NZ executes and that
branches to the code which reloads C with zero and does another pass. If C was zero at
the end of a pass, it would be INCreased to one and DECreased to zero which does set Z,
and control falls through the JR NZ to the keyboard call.

BIT tests the argument (in this case the H register) to see whether or not a specific bit
is set (1) or reset (0). The flag Z is set if a zero is detected at the specified bit (in
this case 6). One CAUTION should be noted. The test for the end of a pass (BIT 6,H) is a
little tacky. Since we point DE at HL + 1, when HL is 3FFFH, DE will already BE 4000H or
one byte past the end of VIDEO RAM. We get away with this because X'4000' happens to
contain a C3H which is above our upper limit so that it will never swap. If the program
were modified to use characters through byte FF then a SWAP would occur on a vital system
vector (a C3 is a jump) and an FF would end up there (an FF is a RST 38H) which would
positively blow your buns away. PART ONE of the ASSEMBLY contest is to rewrite the
assembly code so that this can never occur. Also in PART ONE, see if you can rewrite
lines 2l0-230 to do the same job with one less compare.

The Shell sort takes a list of elernents and divides them into zones of ever increasing
length. A list of l00 elements is divided by an arbitrary number. In advanced
languages, this is usually not two but in assembler it makes little difference due to
speed and is usually done to take advantage of the easy method of dividing by two in a
binary base numbering system. You merely shift the number one place to the right, which
is exactly what we do when dividing by ten in a decimal system.

The items in each shell are then placed in order and the list advances to each successive
shell until the list is exhausted. The control number is then divided again which
effectively increases the size of the shells and the process is repeated until the shell
length equals the number of objects in the list. Since this might be a bit vague, let's
look at some actual numbers. In a list of l00 we divide by 3 to get 32 shells of 3 items
each and one of 4. The first shell is comprised of the first element plus all elements
offset by 33 or the elements 1, 34, 67, and l00. The second shell contains elements 2,

Page 52

35, and 68, shell three is composed of 3, 36, 69 etc. So that each of the shells has very
few elements. Each shell is then ordered by comparing a pair of elements within it. 1 is
compared to 34 and if necessary they are swapped. Then 2 is compared to 35 etc. until the
list reaches 34. Now we are back to the first shell and compare 34 to 67. If no swap is
necessary we also know that since 1 < 34 < 67 that shell 1 is in order within itself.
If, however, item 67 is less than item 34 we swap them, but we still have no idea if 1 is
less than that item (now at 34) so we compare 1 and 34 again, and if necessary swap them
also.

We divide the number 33 by two and get 16, now there are 16 shells of length 6 or 7.
These are already somewhat re-ordered by pass 1 and we are about 20% "zoned" at the end
of this pass. In 2 passes we have accomplished more than on l00 passes in the bubble
sort. As the sort progresses, you will note the migration of the elements toward their
final resting place. (Kind of like life, isn't it?) The TBA code for the shell screen
sort is as follows:

=OFFSET%,ELEMENTS%,LOOP%,TEST%,TEMP%
CLS
CLEAR100
FOR LOOP%= 15360 TO 15872
POKE LOOP%,RND(95)+32
NEXT LOOP%
ELEMENTS%=512
OFFSET%=INT(ELEMENTS%/3)
FOR LOOP% = 0 TO ELEMENTS%-OFFSET%
TEST%=LOOP%+15360
IF PEEK(TEST%) <= PEEK(TEST%+OFFSET%) THEN @ANOTHER
OFFSET%= INT(ELEMENTS%/2)
@GO: FOR LOOP% = 0 TO ELEMENTS% - OFFSET%
TEST%=LOOP%+15360
@AGAIN: IF PEEK(TEST%) <= PEEK(TEST%+OFFSET%) THEN @ANOTHER
TEMP%=PEEK(TEST%)
POKE TEST%,PEEK(TEST%+OFFSET%)
POKE TEST%+OFFSET%,TEMP%
TEST%=TEST%-OFFSET%
IF TEST%>15360 THEN @AGAIN
@ANOTHER: NEXT LOOP%
OFFSET%=INT(OFFSET%/2)
IF OFFSET%>0 THEN @GO
@DONE: GOTO @DONE

The assembler code is as follows

00090 TITLE <'SHELL/ASM shell sort of video contents'>
00100 ORG 05200H
00ll0 VIDEO EQU 03C00H
00120 @EXIT EQU 0402DH
00130 @KEY EQU 00049H
00140 START LD HL,4000H ;random selection
00l50 LD BC,l024 ;do l024 times
00160 LD DE,VIDEO ;point to screen
00180 SELECT LD A,(HL) ;stuff contents in A
00190 TESTLO CP '!' ;A >= !
00200 JR NC,TESTHI ;test upper limit
002l0 BUMP INC HL ;A < i go
00220 JR SELECT ;try again
00230 TESTHI CP 80H ;check for > 127
00240 JR C,OK ;if not, proceed
00250 JR BUMP ;else try again
00260 OK LD (DE),A ;put on screen
00270 DEC BC ;decrease count

Page 53

00280 LD A,B ;test for end of loop
00290 OR C ;does C = B = 0?
00300 JR Z, SORT ;BC is 0, goto sort
003l0 INC HL ;else point to next char
00320 INC DE ;point to next video
00330 JR SELECT ;goto select

With EDAS, the TITLE pseudo-op places the string between the <> at the top of every page
if you send the assembly listing to the printer. Rather than wait for DE to acquire a
value of 4000H, this time we set up a definite loop in the BC register which DECs every
time a character which meets our discriminating standards is selected. We test for BC =
0 in lines 280 and 290. OR performs a logical or operation of the argument (in this case
the C register) against the accumulator. The result of this operation will be zero only
when both B & C are zero. This must be done because DEC BC or the DEC of any 16 bit pair
does not affect flags. Therefore, it is a way to determine when the 16 bit pair is zero.

00340 SORT LD BC,512 ;initial offset is 512
00350 LD HL,VIDEO ;point to CRT
00360 SORT1 PUSH HL ;save pointer in case we need to go back
00370 POP IX ;loads 16 bit IX through SP
00380 PUSH HL ;save it one more time
00390 ADD HL,BC ;make DE the next Shell member

Note that we did not convert the BC load number into any other number base. We knew we
wanted 512 so the assembler will convert the number to hex for us. A PUSH instruction
places the contents of a 16 bit register or register pair into the memory stack. I will
not discuss the stack at all here. Suffice it to say that it places the contents in
memory and knows where they are. A POP does exactly the opposite, retrieving the
contents from the stack. The operation in lines 360-370 is the most common method of
transferring a 16 bit pair (HL) to an index register. Effectively, after execution of
line 370, IX = HL. HL may be used as a 16 bit "accumulator" for addition and
subtraction. In this case BC was set to 512 (and will be decreased later) which makes HL
= HL + 512 after execution of 390.

00400 LD E,L
00410 LD D,H
00420 BIT 6,H ;test for end of pass
00430 POP HL ;restore current shell element to HL
00440 JR NZ,DIVIDE ;if end of pass goto divide
00460 COMP LD A,(DE) ;compare HL to DE
00470 SUB (HL) ;if A < 0 swap
00480 JP P,NEXT ;if A >= 0 goto next

SUB takes the argument (in this case (HL)) and subtracts it from the accumulator and
stores the result back in A (A = A - (HL)). In this case, because the original
information is destroyed, it may be more desirable to use a CP, but we save one byte this
way and I wanted to show you different methods of de-dermitizing the feline. Notice the
JP P,NEXT. Although a JR would be in range, a JR on condition P is not allowed, so a JP
had to be used.

00490 LD A,(DE) ;restore A for swap
00500 PUSH AF ;save element 1
00510 LD A,(HL) ;get element 2
00520 LD (DE),A ;& put at position 1
00530 POP AF ;restore element 1
00540 LD (HL),A ;& put at position 2
00550 LD E,L ;since a swap occurred, we must look
00560 LD D,H ;backward in the shell
00570 XOR A ;this always clears the C flag
00580 SBC HL,BC ;point HL to -offset

Page 54

XOR does an exclusive OR logical operation on A. We will discuss logical operators next
time. It is necessary in this case because the only 16 bit subtraction possible is an
SBC which is SuBtract with Carry. This subtracts one from the result if the carry flag
is set, which is necessary for multiple precision math. In this case, we do not want the
carry bit set, so we make sure it is gone by blasting it with XOR.

00590 LD A,H ;we must be sure we are >= 3C00
00600 CP 03CH ;if H < 0 then proceed
00610 JR NC,COMP ;use same code to check negative shell
00620 NEXT PUSH IX ;restore HL to current element
00630 POP HL
00640 INC HL ;point to next shell
00650 BIT 6,H ;test for > 4000H
00660 JR Z,SORT1 ;if not go again
00670 DIVIDE SRL B ;divide BC offset by 2
00680 RR C

The SRL instruction (Shift Right Logical) takes all eight bits of a register and bumps
every one one space to the right. A zero is loaded into bit 7 and if there was a 1 at
bit zero the carry flag is set. In this case, the instruction is used to divide the BC
off set by two. The RR C instruction rotates all eight bits of register C to the right,
and will store any carry from the previous SRL B instruction into bit seven of C. Any
carry from C would be a fraction and we don't care about it. The effect is C = INT(C/2).

00690 NOCR LD A,B ;if BC = 0 we are done
00700 OR C
00710 LD HL,VIDEO
00720 JR NZ,SORT1 ;go back if BC <> 0
00730 CALL @KEY ;wait for keystroke
00740 JP 0402DH ;return to LDOS
00750 END START

Well that almost wraps it up. But wait, there's more. Announcing the first LET US
ASSEMBLE CONTEST. Below is a TBA source for a Ripple Sort. Write the assembler version
which works on the screen and answer part one described above. Submit both your answer
to part one and the code for the ripple sort by September 1, 1983 to LSI attn: Ripple
contest. All CORRECT replies will be placed in a hat and three winners will be drawn at
random. Each of the winners will receive A FREE YEAR of extended support.

No purchase is necessary to enter (or is probably possible). All entrants must be alive
at the time the code is written. Employees of cesspool cleaning firms are eiigible but
must wash your hands before handling the envelope.

Ripple Sort TBA listing :

=FLAG%,LOOP%,TEMP%,LOOPl%
CLS
FOR LOOP%=15360 TO 15872
POKE LOOP%, RND(95)+32
NEXT LOOP%
FOR LOOP%=15360 TO 15871
FOR LOOP1%= LOOP%+1 TO 15872
IF PEEK(LOOP%)<=PEEK(LOOP1%) THEN @SKIP.IT
TEMP%=PEEK(LOOP1%)
POKE LOOP1%,PEEK(LOOP%)
POKE LOOP%,TEMP%
@SKIP.IT
NEXT LOOP1%,LOOP%
@LOOP: GOTO @LOOP

Page 55

LDOS: HOW IT WORKS - Non-Radio Shack disk drives

Creating system disks, booting double-sided discussed
or--- How to make a directory sandwich.

by Joseph J. Kyle-DiPietropaolo

This quarter's topic is one of constant demand, mainly due to the proliferation of non -
standard hardware out there. Those of you with 80 track, or double-sided (DS) disk
drives wil1 find this in formation of tremendous interest. Anyone with "normal" hardware
out there? You should come along for the ride anyway. There wi11 be some important
information given that isn't available anywhere else.

First of all, anyone who doesn't have at least one forty track disk drive will be wacked
over the knuckles with this ruler I borrowed from Rich. Forty track is THE standard for
distribution, and not having a forty track drive will cause you no end of headaches right
up until the day you break down and buy one. For those unfortunate souls that don't own a
forty track drive, LSI can provide most of its products on eighty track single-sided
media for a modest additional charge. Also, on the LSI Utility Disk #1, there is a
program that will allow READING of a forty track disk on a eighty track drive, within
certain limits.

The first step in the use of double-sided disk drives is to get them communicating with
your computer/interface and LDOS. A good discussion of the hardware requirements is in
the LDOS Quarterly, Vol. 1 Number 2 (which has been reprinted in The Anthology, Volume
One). As a quick summary, the drive should be configured as a single physical drive, with
side select on pin 32. A continuous cable should be used, with each drive programmed to
its proper drive select. If you have any questions, contact your drive vendor to get the
information for your particular drive.

Now, to the heart of the matter. How do we create a optimized system disk in a 80 track
or double-sided configuration?

Step 1) Get a hardcopy directory of your system disk with all files and allocation
information (use the a,s,i,p parameters).

Step 2) Format a clean, new diskette with the appropriate density, number of sides, and
tracks. Now, consult this chart to determine the number of sectors per cylinder, and
granules per cylinder for your diskette.

Size Density Sides Sectors Granules Size Density Sides Sectors Granules
5" sgl 1 10 2 8" sgl 1 16 2
5" dbl 1 18 3 8" dbl 1 30 3
5" sgl 2 20 4 8" sgl 2 32 4
5" dbl 2 36 6 8" dbl 2 60 6

Now, we need to calculate how many full cylinders will be needed to hold SYS0 and SYS6.
To use the MAX-80 as an example, on that machine SYS0 requires 81 sectors. On a 5" Dden
2-sided disk, that would be 14 granules. SYS6 requires 53 sectors, or 9 granules.
Together that would be 25 granules, or almost five cylinders.

Step 3) Use the patch from the last Quarterly (to SYS8, by the way) to determine where
files will be allocated on the disk. For convenience, I have reprinted the patch at the
end of this article. We want to put SYS0 and SYS6 immediately below the directory, so we
patch SYS8 to place them there for us. In our example, we would patch SYS8 to start
allocation at cylinder 15, allowing five full cylinders. Now, backup SYS0 from your
system disk to your new diskette. A typical command would be:

backup SYS0:0 :1 (s)

By following this procedure, SYS0 will be stored in one extent, starting at the beginning
of a cylinder, and starting on the 'front' of the diskette. This will ensure that the

Page 56

resulting diskette will boot on your system, if your system will handle the density
involved. Model I users with SOLE, use the diskette processed by SOLE1 starting with
Step 2, create the sysgen file after Step 7, and SOLE2 after Step 8.

Step 4) Now backup SYS6 to the new diskette. It will be placed immediately below the
directory. The remainder of the system files other than SYS7 will require 10 granules
Calculate how many cylinders will be necessary to hold these files, and patch SYS8 to
start allocating that far above the directory. For our example, that would be two
cylinders, and we would tell SYS8 to start allocating at cylinder 23 (17 hex), leaving 21
and 22 free for the other system files. You can also check the free space map of the
diskette, and see if there are any free granules immediately below the directory left
over after SYS6. If so, these can be used for the other system files, and can be
subtracted from the ten needed. Now, backup SYS7.

Step 5) We now have SYS7 above the directory, with enough blank space in-between to hold
all of the other system files. At this point, we're most of the way home. Re-patch SYS8
with the cylinder number from Step 3, and backup the remainder of the system files. A
typical command would be:

backup /sys:0 :1 (new,s)

Step 6) Now backup everything else from your system disk. Use a command like:

backup :0 :1 (new)

Model I users will then want to transfer control to their new system disk (see the
'system (system=' command), and backup the files from their LDOSXTRA disk to their new
system disk.

Step 7) Re-patch SYS8 back to normal, or to the desired allocation on both your old and
new system disks.

That's it! Now, that wasn't so painful, was it?

For your convenience, here is the SYS8 patch information reprinted from the last
Quarterly:

. Optional patch to SYS8/SYS

. This patch allows for arbitrary allocation, as opposed to random

. The patch is the same for Model I, Model 3, and MAX-80, for LDOS 5.1.3 ONLY

.
D00,FE=2E 01 00 00 00 00
. This (the 01) is the cylinder number (hex) that allocation will start at
.
. To reverse the patch, the original code in SYS8 was:
. D00,FE=D5 CD 4E 44 D1 6C
.
. end of patch

As an example, here's the format of a patch to start allocation at cylinder 15:
PATCH SYS8/SYS.SYSTEM (D00,FE=2E OF 00 00 00 00)

LES INFORMATION

by Les Mikesell

The differences between device and file access under the 5.1 version of LDOS have been
discussed in earlier issues. The status in the Z flag is different for requests through
@GET. A character will be input from a file with the Z flag set if there are no errors,
while @GET returns with an NZ condition if the request goes to a device driver. If the

Page 57

ROM keyboard driver is used instead of the LDOS KI/DVR, the status flag is unspecified,
and it is necessary to test for a non-null character.

Under LDOS 6.0 (alias TRSDOS 6.0) the status conditions returned by @GET and @PUT
requests are handled identically for files and devices. This simplifies the task of
dealing with I/O devices which may be ROUTED to files by the operating system, and allows
programs to use the same routines with either devices or files if a choice is given at
run-time. The routines using these functions should be written to handle the error
conditions that might be returned by either a device or file access.

For @PUT, the Z flag will be set after a successful completion. If the function returns
with NZ status, the error number will be in the A register. Possible errors from a @PUT
request might include "device not available" from a timeout on the printer ready test, or
any of the file access errors. If it is possible to recover from an output error, a
program should take the appropriate steps when the error is detected.

The status for @GET is similar: returning with the Z flag set indicates a successful
input, and the input character will be in the A register. If the Z flag is reset, the
value in the A register indicates the type of error. However, a very likely possibility
is that the error number will be 0, indicating "no error". This simply means that the
device did not have a character available to return at the time of the input request.
Thus, the indication is that since the Z flag is reset, the input request was not
successful, but there was actually no error involved. A program would normally loop
repeating the @GET request until a character is received, if the input is necessary
before further processing.

Examples of @GET and @PUT for 6.0

First a file or device must be OPENed using the defined FCB
FCB DS 32
˝
.. then to output a character...
˝
 LD DE,FCB ;point to OPEN FCB
˝
 LD C,CHAR ;put character in C
 LD A,4 ;@PUT SVC number
 RST 40 ;do it
 JP NZ,ERROR ;process error (or quit)
..continue..

.. to input a character...
 LD DE,FCB
LOOP: LD A,3 ;@GET SVC number
 RST 40 ;do it
 JR Z,GOTCHR ;continue if char rcvld
 OR A ;otherwise test for error
 JR Z,LOOP ;wait for some input
 CP 1CH ;End of file error?
 JP Z,EOF ;to completion handler..
.. could test for other specific errors here..
.. depending on the program..
 JP ERROR ;to fatal error exit..
GOTCHR normal continuation of program

One built-in function that is available on many other systems but not the TRS80's is a
simple method of temporarily linking the video output to the printer. The lack of this
function may stern from the incompatibility between the TRS80 video and printer control
codes. The following filters will provide this ability for both 5.1 and 6.0 versions.

Page 58

The program actually filters both the *KI and *DO devices, using the presence of a
control-P (shift-down arrow P on the Model 1 & 3) detected during a keyboard input to
toggle the link between the video and printer on and off. When the toggle is on, each
character sent to the video is also sent to the printer, except for those values that are
likely to cause strange effects. The SYSTEM (GRAPHIC)-bit is tested to determine if the
characters above X'7F' should be sent or converted to a period, as in the screen-print
function. A typical use of the function would be to obtain a listing of the output from
a program that normally displays only on the video. Just before pressing <ENTER> on the
command that invokes the listing, enter the control-P character. Enter the control-P
again to terminate the listing any time the system is requesting keyboard input.

After assembling the program with the name CTLP/FLT, the 5.1 version of the filter would
be installed with the command: FILTER *KI CTLP

The 6.0 version requires two steps to install, since filters take their own device name
and DCB:

SET *CP CTLP
FILTER *KI CTLP

The 6.0 version filters the video by modifying the driver address in the DCB, like the
5.1 version instead of creating an additional DCB for the video portion of the filter
also. This method requires that no other filtering, routing, or linking be done to the
*DO device before loading CTLP/FLT.

The assembly language listings follow, starting on Page 59.

THE JCL CORNER - By Chuck

There will be no JCL Corner this issue, as the JCL Corner is currently undergoing a
change in format. Because all the basics for JCL have been covered, in the future, it
will be going to a question and answer format. Question and answer columns covering
advanced subjects will alternate with reprints of earlier introductory information.

Because of the late mailing of the last Quarterly, the winners of the JCL Corner question
competition will not be announced until the next Quarterly.

So, until next time......

//EXIT

00100 ;Filter for LDOS 5.1.x to allow toggling a link 00530 JP NZ,ISNIL ;Go if so
00110 ; *DO *PR by typing CTL-P any time the 00540 BIT 4,A ;Routed?
00120 ; keyboard driver is called 00550 JP NZ,ROUTED ;Go if so (error)
00130 ; 00560 AND 1 ;dvr handle input?
00140 TGLCHR EQU 'P'-40H ;ctl-P 00570 CP 1
00150 ; 00580 JP NZ,DEVERR ;Go if not
00160 ; Hardware dependant EQUates.. Mod 1 addresses used 00590 POP HL ;rest buff pointer
00170 HIGH3 EQU 4411H 00600 LD DE,PRMTBL ;Scan parameters
00180 PARAM3 EQU 4454H 00610 CALL @PARAM
00190 HIGH$ EQU 4049H 00620 MMOD4 EQU $-2
00200 @PARAM EQU 4476H 00630 JP NZ,PRMERR ;quit if error
00210 @LOGOT EQU 447BH 00640 ;test parameter value and initialize filter
00220 LOGOT3 EQU 428AH 00650 LD BC,$-$;value set by @PARAM
00230 KIJCL$L EQU 43BEH 00660 CHARP EQU $-2 ;<=here
00240 KIJCL$3 EQU 42BEH 00670 LD A,C
00250 SFLAG$L EQU 430FH 00680 OR A ;set flag
00260 SFLAG$3 EQU 442BH 00690 JR Z,GETDVR ;go if not specified
00270 DFLAG$L EQU 441FH 00700 LD (TGL),A ;stuff byte if wanted
00280 DFLAG$3 EQU 4289H 00710 ;allow installation to *KI in JCL
00290 ; 00720 GETDVR PUSH IX ;If the DCB is for *KI,
00300 ; General EQUates... 00730 POP DE ; then use KIJCL saved
00310 KDCB$ EQU 4015H 00740 LD HL,KDCB$; vector for hooks
00320 DODCB$ EQU 401DH 00750 XOR A ;clear carry
00330 @EXIT EQU 402DH 00760 SBC HL,DE ;Zero if *KI
00340 @ABORT EQU 4030H 00770 LD L,(IX+l) ;P/u DCB vector address
00350 @DSPLY EQU 4467H 00780 LD H,(IX+2)
00360 @PRT EQU 3BH 00790 JR NZ,SETADD ;use if not *KI
00370 LF EQU l0 ;linefeed character 00800 LD A,(SFLAG$l) ;Is DO in effect?
00380 CR EQU 13 ;carriage return 00810 SFLAG EQU $-2
00390 ; 00820 AND 20H
00400 ; LDOS 'FILTER' command handler 00830 JR Z,SETADD ;Not KIJCL if no DO
00410 ; 00840 LD HL,(KIJCL$l) ;P/u JCL saved vector
00420 ORG 5200H 00850 KJCL EQU $-2
00430 LNTRY PUSH DE ;put DCB pointer 00860 LD (WASKI+l),A ;Note for later
00440 POP IX ;into IX register 00870 ; put previous driver addresses into filter
00450 PUSH HL ;save buff pointer 00880 SETADD LD (DVRADD),HL ;put in filter
00460 CALL MODEL 00890 LD (DVRl),HL
00470 LD A,(DE) ;Get DCB type byte 00900 LD HL,(DODCB$+l) ;get *DO dvr addr
00480 PUSH AF 00910 LD (DODVR),HL ;put in filter
00490 LD HL,SIGNON ;=>Signon message 00920 ; find available high memory
00500 CALL @DSPLY ;print it 00930 LD HL,(HIGH$) ;find top of memory
00510 POP AF ;restore type byte 00940 MMOD1 EQU $-2
00520 BIT 3,A ;Device routed NIL? 00950 LD (OLDMEM),HL ;save in flt header

00960 PUSH HL ;save 01390 ISNIL LD HL,ISNIL$
00970 ; relocate JP and CALL addresses 01400 JR ERROUT
00980 LD DE,LAST ;end of code now.. 01410 DEVERR LD HL,DEVER$
00990 OR A ;clr carry 01420 JR ERROUT
01000 SBC HL,DE ;offset of move 01430 ROUTED LD HL,ROUTD$
01010 EX DE,HL ;into DE 01440 JR ERROUT
01020 LD HL,(REL1) ;fix absolute memory 01450 PRMERR LD HL,PRMER$;'Parameter error'
01030 ADD HL,DE ;references 01460 ERROUT CALL @LOGOT ;Display and log
01040 LD (REL1),HL ;in filter 01470 MMOD3 EQU $-2
01050 LD HL,(REL2) 01480 JP @ABORT ;Quit
01060 ADD HL,DE 01490 ;*=*=*
01070 LD (REL2),HL 01500 MODEL LD A,(125H)
01080 LD HL,(REL3) 01510 CP 'I'
01090 ADD HL,DE 01520 RET NZ
01100 LD (REL3),HL 01530 LD HL,HIGH3
01110 ; move into high memory 01540 LD (MMOD1),HL
01120 LD HL,LAST ;end of relocated code 01550 LD (MMOD2),HL
01130 POP DE ;old HIGH$ 01560 LD HL,LOGOT3
01140 LD BC,LAST-FENTRY+l ;len of rel code 01570 LD (MM003),HL
01150 LDDR ;move it 01580 LD HL,PARAM3
01160 EX DE,HL 01590 LD (MMOD4),HL
01170 LD (HIGH$),HL ;set new HIGH$ 01600 LD HL,KIJCL$3
01180 MMOD2 EQU $-2 01610 LD (KJCL),HL
01190 INC HL ;pnt to flt entry 01620 LD (KJCL2),HL
01200 ; install new addresses in DCBs 01630 LD HL,SFLAG$3
01210 DI ;Off while DCB update 01640 LD (SFLAG),HL
01220 WASKI LD A,0 ;If DCB was for KI & 01650 LD HL,(DFLAG$3)
01230 OR A ; DO was in effect, 01660 LD (DFLAG),HL
01240 JR Z,WASKIL ; then update KIJCL 01670 RET
01250 LD (KIJCL$l),HL 01680 ;*=*=*
01260 KJCL2 EQU $-2 01690 ; Data area
01270 JR WASKI2 01700 ;*=*=*
01280 WASKI1 LD (IX+l),L ;set new addr in DCB 01710 SIGNON DB 'CTLP/FLT - LDOS printer control filter'
01290 LD (IX+2),H 01720 DB LF,CR
01300 LD DE,DOEPT-FENTRY ;offset to DO filter 01730 PRMER$ DB 'Parameter error!',CR
01310 ADD HL,DE ;calc new address 01740 ISNIL$ DB 'Device not active!',CR
01320 LD (DODCB$+l),HL ;for video DCB 01750 DEVER$ DB 'Incorrect device type!',CR
01330 WASKI2 EI 01760 ROUTD$ DB 'Device is routed!',CR
01340 ;*=*=* 01770 ;
01350 EXIT JP @EXIT ;Done 01780 PRMTBL DB 'CHAR '
01360 ;*=*=* 01790 DW CHARP
01370 ; Error handling 01800 DB 'C '
01380 ;*--*=* 01810 DW CHARP

01820 DW 0 ;end of list 02250 REL2 EQU $-2 ;relocate address
01830 ; 02260 OR A
01840 ;*=*=* 02270 JR Z,DOPUT ;go if toggle OFF
01850 ; Actual filter moved to high memory 02280 ;send to both *DO and *PR
01860 ; LDOS style header... 02290 ;but test first for video control codes...
01870 ;*=*=* 02300 ;that may do strange things to a printer...
01880 FENTRY JR START ;Branch over linkage 02310 LD A,C ;check char..
01890 DW $-$;Last byte used 02320 CP 20H ;for ctl range
01900 OLDMEM EQU $-2 ;prev HIGH$ value 02330 JR NC,DUAL ;go if printable
01910 ; 02340 CP 0DH+1 ;allow CR/LF/FF/BKSP
01920 DB 4,'CTLP' 02350 JR NC,DOOUT ;avoid 0EH -19H
01930 TOGGLE DB 0 ;on/off switch 02360 DUAL PUSH BC ;save char in C
01940 ; 02370 CALL DOOUT ;CALL video output
01950 ; actual filter routine 02380 REL3 EQU $-2
01960 START JP NC,$-$;go if not input request 02390 POP BC ;restore character
01970 DVRL EQU $-2 ;old driver address 02400 PUSH BC ;save again
01980 CALL $-$;otherwise ca]] old driver 02410 LD A,LF ;is character..
01990 DVRADD EQU $-2 ;stuff dvr addr here also 02420 CP C ;a line-feed?
02000 ; 02430 LD A,CR ;make carriage ret
02010 PUSH AF ;save char/status 02440 JR Z,PRCHAR ;if so.
02020 CP TGLCHR ;is it a toggle? 02450 BIT 7,C ;GRAPHIC char?
02030 TGL EQU $-1 02460 JR Z,NOTGRP ;go if not
02040 JR NZ,DONE ;go if not 02470 LD A,(DFLAG$l) ;graphics ok?
020S0 LD HL,TOGGLE ;get current state 02480 DFLAG EQU $-2
02060 REL1 EQU $-2 02490 RLCA ;quick bit 7 test
02070 LD A,(HL) 02500 LD A,'.' ;change to a period
02080 CPL ;reverse it 02510 JR NC,PRCHAR ;if GRAPHIC off
02090 LD (HL),A ;and save 02520 NOTGRP LD A,C ;get character in A
02100 POP AF ;dump toggle from 02530 PRCHAR CALL @PRT ;send to current *PR
02110 XOR A ;input stream 02540 POP BC ;then rest original
02120 RET 02550 LD A,C ;char in case calling
02130 ; 02560 CP A ;program needs it
02140 DONE POP AF ;restore char/status 02570 RET
02150 RET ;and return it 02580 ;
02160 ; 02590 LAST EQU $-1 ;used for length calculation
02170 ;This code is actually a filter for *DO 02600 ;
02180 DOEPT JR Z,ISOUT ;only affect output 02610 END ENTRY
02190 DOPUT JP $-$;previous *DO driver
02200 DODVR EQU $-2
02210 DOOUT XOR A ;Set Z for output
02220 JR DOPUT ;go to driver 00100 ;Filter for LDOS 6.x to allow toggling a link
02230 ;test if link wanted.. 00110 ; *DO *PR by typing CTL-P any time the
02240 ISOUT LD A,(TOGGLE) ;*PR active now? 00120 ; keyboard driver is called

00130 ; 00560 LD DE,PRMTBL ;Scan parameters
00140 TGLCHR EQU 'P'-40H ;ctl-P 00570 LD A,@PARAM
00150 ; 00580 RST 40
00160 ; SVC number equates 00590 JP NZ,PRMERR ;quit if error
00170 @HIGH$ EQU 100 00600 ;test parameter value and initialize filter
00180 @PARAM EQU 17 00610 LD BC,$-$;val set by @PARAM
00190 @LOGOT EQU 12 00620 CHARP EQU $-2 ;<=here
00200 @DSPLY EQU 10 00630 LD A,C
00210 @PRT EQU 6 00640 OR A ;set flag
00220 @CHNIO EQU 20 00650 JR Z,CHKDVR ;go if not specified
00230 @FLAGS EQU 101 00660 LD (TGL),A ;stuff byte if wanted
00240 @GTMOD EQU 83 00670 ; see if filter is already installed
00250 @GTDCB EQU 82 00680 CHKDVR LD DE,FLTNAM ;=>CTLP
00260 ;flag table offset values 00690 LD A,@GTMOD ;lk up module header
00270 DFLAG$ EQU 3 00700 RST 40
00280 ; 00710 JP Z,ISRES ;already loaded
00290 ; General EQUates... 00720 ; check if memory available
00300 LF EQU 10 ;linefeed character 00730 BIT 0,(IY+2) ;HIGH$ frozen?
00310 CR EQU 13 ;carriage return 00740 JP NZ,NOROOM ;quit if so
00320 ; 00750 ; hook into video driver directly but first check
00330 ; LDOS 'FILTER' command handler for 6.0 00760 ; that it is not linked or routed or filtered
00340 ; The filter is first installed with the 'SET' 00770 GETDVR LD E,'D'
00350 ; command and takes its own DCB 00780 LD D,'O' ;DO name to DE
00360 ; Then it is connected to the desired device with 00790 LD A,@GTDCB ;find the DCB
00370 ; the 'FILTER' command 00800 RST 40
00380 ; 00810 JP NZ,DOERR ;error if not found
00390 ORG 3000H 00820 LD A,(HL) ;check TYPE byte
00400 ENTRY PUSH DE ;put DCB pointer 00830 AND 01110000B ;filter/route/link??
00410 POP IX ;into IX register 00840 JP NZ,CANT ;all illegal
00420 PUSH HL ;save buff pointer 00850 INC HL ;=>driver LSB
00430 LD HL,SIGNON ;=>Signon message 00860 LD (DODCB),HL ;save addr of DCB+L
00440 LD A,@DSPLY 00870 LD E,(HL) ;get *DO driver
00450 RST 40 ;print it 00880 INC HL ;address
00460 LD A,@FLAGS ;pnt IY to flg table 00890 LD D,(HL) ;in DE
00470 RST 40 00900 LD (DODVR),DE ;put into filter
00480 PUSH IY 01000 ;
00490 POP HL ;base address to HL 00920 ; find available high memory
00500 LD DE,OFLAG$;ofst to DFLAG$ addr 00930 LD A,@HIGH$;get HIGH$ into HL
00510 ADD HL,DE ;point there 00940 LD HL,0
00520 LD (DFLAG),HL ;put addr in filter 00950 LD B,L ;B=0
00530 POP HL ;=>command line 00960 RST 40 ;get top of memory
00540 BIT 3,(IY+2) ;System request? 00970 LD (OLDMEM),HL ;save in flt header
00550 JP Z,NOTSET ;must inst] w/SET 00980 PUSH HL ;save HIGH$

00990 LD (DCBADD),IX ;put DCB addr in hdr 01420 ;*=*=*
01000 ; relocate JP, CALL and LD addresses in filter 01430 LD HL,0 ;indicate no error
01010 LD DE,LAST ;end of code now.. 01440 RET
01020 OR A ;clear carry flag 01450 ;*=*=*
01030 SBC HL,DE ;offset of move 01460 ; Error handling
01040 EX DE,HL ;into DE 01470 ;*=*=*
01050 LD HL,(REL1) ;fix absolute memory 01480 NOROOM LD HL,NOROOM$
01060 ADD HL,DE ;references 01490 JR ERROUT
01070 LD (REL1),HL ;in filter 01500 ISRES LD HL,ISRES$
01080 LD HL,(REL2) 01510 JR ERROUT
01090 ADD HL,DE 01520 NOTSET LD HL,NTSET$
01100 LD (REL2),HL 01530 JR ERROUT
01110 LD HL,(REL3) 01540 DOERR LD HL,DOERR$
01120 ADD HL,DE 01550 JR ERROUT
01130 LD (REL3),HL 01560 CANT LD HL,CANT$
01140 LD HL,(REL4) 01570 JR ERROUT
01150 ADD HL,DE 01580 PRMERR LD HL,PRMER$;'Parameter error'
01160 LD (REL4),HL 01590 ERROUT LD A,@LOGOT ;Display and log
01170 ; move into high memory 01600 RST 40
01180 LD HL,LAST ;end of rel code 01610 LD HL,0FFFFH ;indicate error
01190 POP DE ;old HIGH$=destination 01620 RET
01200 LD BC,LAST-FENTRY+l ;len of rel code 01630 ;*=*=*
01210 LDDR ;move it, leaving DE.. 01640 ;*=*=*
01220 EX DE,HL ;=>new HIGH$ 01650 ; Data area
01230 PUSH HL 01660 ;*=*=*
01240 LD A,@HIGH$;set new HIGH$ 01670 DODCB DW 0 ;store DCB ptr
01250 RST 40 ;note: B=0 01680 SIGNON DB 'CTLP/FLT - LDOS printer control filter'
01260 POP HL 01690 DB LF,CR
01270 INC HL ;pnt to flt entry 01700 PRMER$ DB 'Parameter error!',CR
01280 ; set up new in DCB 01710 DOERR$ DB 'Cannot find *DO DCB',CR
01290 LD (IX+0),01000111B ;filter/getputct] 01720 NTSET$ DB 'Must install with SET command',CR
01300 LD (IX+l),L ;set new addr in DCB 01730 CANT$ DB 'Display device is routed, linked,'
01310 LD (IX+2),H ;for new Device/flt 01740 DB ' or filtered.',CR
01320 ; hook into video driver 01750 ISRES$ DB 'Filter already resident',CR
01330 LD DE,DOEPT-FENTRY ;offset to DO filter 01760 NOROOM$ DB 'No memory available',CR
01340 ADD HL,DE ;calc new address 01770 ;
01350 EX DE,HL ;move to DE 01780 PRMTBL DB 'CHAR '
01360 DI 01790 DW CHARP
01370 LD HL,(DODCB) ;=>*DO DCB+L 01800 DB 'C '
01380 LD (HL),E 01810 DW CHARP
01390 INC HL 01820 DW 0 ;end of list
01400 LD (HL),D ;repl driver address 01830 ;
01410 EI 01840 FLTNAM DB 'CTLP',3 ;name terminated for @GTMOD

01850 ;*=*=* 02280 CP A
01860 ; Actual filter moved to high memory 02290 JR DOPUT ;go to driver
01870 ; LDOS style header... 02300 ;test if link wanted..
01880 ;*=*=* 02310 ISOUT LD A,(TOGGLE) ;*PR active now?
01890 FENTRY JR START ;Branch around linkage 02320 REL2 EQU $-2 ;relocate address
01990 DW $-$;Last byte used 02330 OR A
01910 OLDMEM EQU $-2 ;prev HIGH$ value 02340 JR Z,DOOUT ;go if toggle OFF
01920 ; 02350 ;send to both *DO and *PR
01930 DB 4,'CTLP' 02360 ;but test first for video control codes...
01940 DCBADD DW $-$;DCB using filter 02370 ;that may do strange things to a printer...
019S0 SPARE DW 0 02380 LD A,C ;check char..
01960 TOGGLE DB 0 ;on/off switch 02390 CP 20H ;for ctl range
01970 ; 02400 JR NC,DUAL ;go if printable
01980 ; actual filter routine (looks for toggle) 02410 CP 0DH+1 ;allow CR/LF/FF/BKSP
01990 START LD IX,(DCBADD) ;get DCB addr to IX 02420 JR NC,DOOUT ;avoid 0EH -19H
02000 REL4 EQU $-2 ;relocate address 02430 DUAL PUSH BC ;save char in C
02010 LD A,@CHNIO ;cont down dev chain 02440 CALL DOOUT ;CALL video output
02020 JP NC,40 ;dn't come back here 02450 REL3 EQU $-2 ;relocated address
02030 RST 40 ;unless input req 02460 POP BC ;restore character
02040 RET NZ ;back if no char 02470 PUSH BC ;save again
02050 ;check input character for toggle value 02480 LD A,LF ;is character..
02060 PUSH AF ;save char/status 02490 CP C ;a line-feed?
02070 CP TGLCHR ;is it a toggle? 02500 LD A,CR ;make carriage ret
02080 TGL EQU $-1 02510 JR Z,PRCHAR ;if so.
02090 JR NZ,DONE ;go if not 02520 BIT 7,C ;GRAPHIC char?
02100 LD HL,TOGGLE ;=> switch byte 02530 JR Z,NOTGRP ;go if not
02110 REL1 EQU $-2 02540 LD A,($-$) ;graphics ok?
02120 LD A,(HL) ;pick it up 02550 DFLAG EQU $-2 ;fnd from flg tbl indx
02130 CPL ;reverse it 02560 RLCA ;quick bit 7 test
02140 LD (HL),A ;and save 02570 LD A,'.' ;change to a period
02150 POP AF ;discard toggle from 02580 JR NC,PRCHAR ;go if GRAPHIC off
02160 OR 0FFH ;input stream 02590 NOTGRP LD A,C ;get character in A
02170 LD A,0 ;by ret 0 w/NZ stat 02600 PRCHAR LD C,A ;send to current *PR
02180 RET 02610 LD A,@PRT
02190 02620 RST 40 ;out to PR
02200 DONE POP AF ;restore char/status 02630 POP BC ;then rest original
02210 RET ;and return it 02640 LD A,C ;char if calling
02220 ; 02650 RET
02230 ;This code is actually a filter for *DO 02660 ;
02240 DOEPT JR Z,ISOUT ;only affect output 02670 LAST EQU $-1 ;used for length calculation
02250 DOPUT JP $-$;previous *DO driver 02680 ;
02260 DODVR EQU $-2 02690 END ENTRY
02270 DOOUT LD A,C ;Set Z for output

