
TR0125 (v1.4) Sept 1, 2006 1

VB Script Reference

Summary
Technical Reference
TR0125 (v1.4) Sept 1, 2006

This reference manual describes the VB Script language
used in Altium Designer.

This reference covers the following topics:

• Exploring the VB Script Language

• VB Script source files

• Creating new scripts and adding scripts to a project

• Executing a script in Altium Designer

• Assigning a script to a process launcher

• About VB Script examples

• Writing VB Script scripts

• VB Script keywords, statements and functions

• Forms and Components.

Exploring the VB Script Language
This Reference details each of the VisualBasic Scripting statements, functions and extensions that are
supported in the scripting system. The Visual Basic Scripting or VB Script for short also can deal with
Altium Designer Object Models and Visual Components. It is assumed that you are familiar with basic
programming concepts and as well as the basic operation of your Altium Designer-based software.

The scripting system supports the VB Script language (along with other scripting languages) which is
derived from the Microsoft ActiveX Scripting system, for instance you should be able to use CScripts or
WScripts which are based on the same ActiveX scripting engine that Altium Designer uses.

All scripting languages supported in Altium Designer are typeless or untyped which means you cannot
define records or classes and pass pointers as parameters to functions for example.
VB Script script example
Sub DisplayName (sName)

 MsgBox "My Name is " & sName

End Sub

VB Script Reference

2 TR0125 (v1.4) Sept 1, 2006

For detailed information on VB Script and its keywords, operators and statements, please refer to
Microsoft Developers Network website, http://msdn.microsoft.com/library/en-
us/script56/html/vtoriVB Script.asp.

Altium Designer and Borland Delphi Run Time Libraries
The Scripting system also supports a subset of Borland Delphi Run Time Library (RTL) and a subset of
Altium Designer RTL which is covered in the RTL Reference in the Scripting Online Help in Altium
Designer.

There are several Object Models in Altium Designer; for example you can use the PCB Object Model in
your VB Scripts to deal with PCB objects on a PCB document, WorkSpaceManager Object Model to
work with Projects and their documents and extract netlist data for example.

The Scripting Online Reference Help contains information on interfaces with respect to Altium Designer
Object Models, components, global routines, types, and variables that make up this scripting language.
You can consult the Visual Basic documentation by Microsoft for more information on VB Script
functions.
Server Processes
A script can execute server processes and thus server processes and parameters are covered in the
Server Process Reference.

VB Script source files
You open a script project in Altium Designer and you can edit the contents of a script inside the Altium
Designer. A script project is organized to store script documents (script units and script forms). You can
execute the script from a menu item, toolbar button or from the Run Script dialog from the Altium
Designer’s system menu.
PRJSCR, VBS and DFM files
The scripts are organized into projects with a PRJSCR extension. Each project consists of files with a
vbs extension. Files can be either script units or script forms (each form has a script file with vbs
extension and a corresponding form with a dfm extension). A script form is a graphical window that
hosts different controls that run on top of Altium Designer.

However it is possible to attach scripts to different projects and it is highly recommended to organize
scripts into different projects to manage the number of scripts and their procedures / functions.

Scripts (script units and script forms) consist of functions/procedures that you can call within Altium
Designer.

Creating new scripts
You can add existing or new scripts into the specified project in the Projects panel in Altium Designer.
There are two types of scripts : Script Units and Script Forms. With a project open in Altium Designer,
right click on a project in the Projects panel, and a pop up menu appears, click on the Add New to
Project item, and choose VB Script Unit. A new script appears.

A script can have at least one routine which defines the main program code. You can, however, define
other routines and functions that can be called by your code. The functions and subroutines are
defined within a Function End Function or Sub End Sub statement block.

Note that it is possible to have no routines within a script but at least it is necessary to have a .

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 3

Example of a Subroutine
Sub Log(Description, Data)

 Call ReportFile.Write(Description)

 Call ReportFile.WriteLine(Data)

End Sub

Example of a subroutine less script.
' script here with no function/sub routine

A = 50

A = A + 1

ShowMessage(IntToStr(A))

Adding scripts to a project
You can add existing scripts to a specified project in the Projects panel in Altium Designer. With a
project open in Altium Designer, right click on this project in the Projects panel, and a pop up menu
appears, click on the Add Existing to Project... item.

A Choose Documents To Add to Project dialog appears. You can multi-select as many scripts you want
to add into the specified project.

Executing a script in Altium Designer
In Text Editor workspace
You can configure the Run command when you are in the text editor to point to a script and execute it.
Every time you click on the Run icon from the Text Editor menu or press F5, the scripting system
executes the script pointed to by the Set Project Startup Procedure item. You can change the start
up procedure by clicking on the Set Project Start Up Procedure item in the Run menu which invokes
the Select Item to Run dialog. You can then select which procedure of a script to be set.
Executing a script on a design document
To execute a script in Altium Designer, there are two methods and there are two different Altium
Designer dialogs for each method. These methods are necessary if you wish to run a script on a server
specific document such as PCB or Schematic documents.
1. Using the Select Item To Run dialog to execute a script
Click on the Run Script from the Altium Designer system menu and the Select Item to Run dialog
appears with a list of procedures (those parameter-less procedures/functions only appear) within each
script in a opened project in Altium Designer.

Note that you can also click on a script unit filename within this Select Item to Run dialog and the
functionless/procedureless Begin End. block within the script gets executed. See code example here

Script unit
' script here with no function/procedure

A = 50

A = A + 1

VB Script Reference

4 TR0125 (v1.4) Sept 1, 2006

ShowMessage(IntToStr(A))

Now, only parameter-less functions and procedures for each script of an opened project only appear
on the Select Item to Run dialog. It is a good idea for script writers to write the functions in scripts so
that they will appear in this dialog and the other functions with parameters not to appear in this same
dialog.

When you are working in a different editor such as PCB editor, you can assign the script to a process
launcher and use it to run a specified script easily. See the Assigning a script to a process launcher.

You can add a list of installed script projects so that, every time you invoke the Select item to Run
dialog, the installed script projects will appear along with other script projects currently open in the
Projects panel. Invoke Scripting System Settings item from Tools » Editor Preferences menu in
the TextEditor workspace and then drill down to the Altium Designer System, Scripting System, and the
Scripting System page appears.
2. Using the Run Process dialog to execute a script
Invoke the Run Process dialog from Altium Designer's System menu and execute the
ScriptingSystem:RunScript process in the Process: field and specify the script parameters, the
ProjectName parameter which is the path to the project name and the ProcName parameter to
execute the specified procedure from a specified script in the Parameters: field.
You need the following parameters for the ScriptingSystem:RunScript process to execute a specified
script.
Process:
ScriptingSystem:RunScript
Parameters:
ProjectName (string)

ProcName (string)
Example
Process: ScriptingSystem:RunScript

Parameters : ProjectName = C:\Program Files\Altium Designer 6\Examples\Scripts\VB
Scripts\HelloWorld.PrjScr | ProcName = HelloWorld>HelloWorld.
To run a script repeatedly in the text editor in Altium Designer, assign the script to the Set Project
Startup Procedure item from the Run menu of the Text editor server. you can then click on the Run
button. or press F5 to execute this script. To run a different script, you will need to re-invoke the Set
Project Startup Procedure from the Run menu and assign a new script to it.

You can click on the Run Script item from the Altium Designer system menu and the Select Item to
Run dialog appears with a list of procedures (those parameterless procedures/functions only appear)
within each script in a project. This may be needed if you wish to run a script on a specific document
type such as PCB or Schematic documents.

You can also use the Run Process dialog and specify the scriptingsystem server process and specify
the parameters for this scripting system server to execute a script, this may also be needed if you wish
to run a script on a specific document type such as PCB or Schematic documents.

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 5

Assigning a script to a menu, key or toolbar
You have the ability to assign a script to a server menu, toolbar or hot key in Altium Designer which
makes it possible for you to run the script over a current PCB document for example. You will need to
specify the full path to a project where the script resides in and specify which unit and procedure to
execute the script.
There are two parameters in this case: the ProjectName and the ProcName. For the ProcName
parameter, you need to specify the script filename and the procedure. So the format is as follows:
ProcName = ScriptFileName>ProcedureName. Note the GreaterThan (>) symbol used between the
script file name and the procedure name.
Assigning to a process launcher example
To illustrate this ability to assign a script to a resource, we will open a PCB document in Altium
Designer and use the HelloWorld script example from the \Scripts\VB Scripts\ folder.

1. Double click on the PCB menu and the Customizing PCB Editor dialog appears.
2. Click on the New button from the Customizing PCB Editor dialog.

3. Choose ScriptingSystem:RunScript process in the Process: field of the Customizing PCB Editor
dialog.

4. Enter ProjectName = C:\Program Files\Altium Designer 6\Examples\Scripts\VB
Scripts\HelloWorld.PrjScr | ProcName = HelloWorld>ShowHelloWorldMessage text in the
Parameters: field for example.

5. You will need to give a name to this new command and assign a new icon if you wish. In this case,
the name is PCBScript in the Caption: field of this dialog. The new commands appear in the
[Custom] category of the Categories list. Click on the [Custom] entry from the Categories list.
The PCBScript command appears in the Commands list of this dialog.

6. You then need to drag the new PCBScript command onto the PCB menu from the Customizing
PCB Editor dialog. The command appears on the menu. You can then click on this new command
and the HelloWorld dialog appears.

VB Script Reference

6 TR0125 (v1.4) Sept 1, 2006

About VB Script examples
The examples that follow illustrate the basic features of VB Script programming in Altium Designer. The
examples show simple scripts for the Altium Designer application. The VB Scripts can use script forms,
script units, functions and objects from the Altium Designer Run Time Library and a subset of functions
and objects from the Borland Delphi that is exposed in the scripting system.
The example scripts are organized into \Examples\Scripts\VB Scripts\ folder.

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 7

Writing VB Script scripts
In this section:

• VB Script Naming Conventions

• Local and Global variables

• Subroutines and Functions

• Splitting a line of script.

VB Script naming conventions
VB Script variables are case insensitive, that is, variables in upper and lower case have the same
meaning:
Example
The variables b and B are the same.
b = 60

B = 60

Local and Global variables
Since all scripts have local and global variables, it is very important to have unique variable names in
your scripts within a script project. If the variables are defined outside any subroutines and functions,
they are global and can be accessed by any unit in the same project.

If variables are defined inside a routine, then these local variables are not accessible outside these
routines. Since scripts are typeless you do not initialize variables with their types at all.
Variable Initialization
The local variables inside a procedure are automatically initialized.
Sub Example

 Dim X

 Dim s

 ' x set to 0

 x = 0

 ' s set to empty

 s = “”

End Sub

Subroutines and Functions
VB Script allows two kinds of procedures; subroutines and functions. A function returns a value only.
The syntax of calling a subroutine or a function in a script is as follows:

Call SubRoutineA(parameters)

or

VB Script Reference

8 TR0125 (v1.4) Sept 1, 2006

SubRoutine parameters

Subroutine example
Sub SetTheHeight AHeight

 Set Component.Height = AHeight

End Sub

Function example
Function Addone(value)

 AddOne = Value + 1

End Function

A longer example
Function Test(s)

 Test = S + " rules.."

End Function

Sub DisplayName (sName)

 MsgBox sName

End Sub

Sub Main

Dim S

 S = "Altium Designer"

 DisplayName Test(s)

End Sub

Parameters and Arguments
The procedure declaration normally has a list of parameters (remember variables are considered
typeless and the scripting system works out automatically what the variable types are). The value used
in place of the parameter when you make a procedure call is called an argument.
Example of a subroutine with a parameter.
Sub DisplayName (sName)

 MsgBox "My Name is " & sName

End Sub

Example of calling a subroutine
Sub Main

 DisplayName "Altium Designer Rules"

End Sub

Notes

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 9

The use of the Call keyword to invoke a subroutine or a function is optional (maintained for backward
compatibility).

Including comments in scripts
In a script, comments are non-executed lines of code which are included for the benefit of the
programmer. Comments can be included virtually anywhere in a script.

Any text following ' are ignored by VB Script.

Any text following Rem are ignored by VB Script.
' Comment type example
' This whole line is a comment

Rem this whole line is also a comment

DocName = Document.Name ' Get name of active document

Splitting a line of script
Each code statement is terminated on each line to indicate the end of this statement. VB Script allows
you to write a statement on several lines of code, splitting a long instruction on two or more lines using
the underscore character (_).

VB Script does not put any practical limit on the length of a single line of code in a script, however, for
the sake of readability and ease of debugging it is good practice to limit the length of code lines so that
they can easily be read on screen or in printed form.

Basically if a line of code is very long, you can break this line into multiple lines and this code will be
treated by the VB interpreter as if it were written on a single line.
Unformatted code example
If Not (PcbApi_ChooseRectangleByCorners(BoardHandle,”Choose first
corner”,”Choose final corner”,x1,y1,x2,y2)) Then EndIf

Formatted code example
If Not (PcbApi_ChooseRectangleByCorners(BoardHandle,_

 “Choose first corner”,_

 “Choose final corner”,_

 x1,y1,x2,y2)) Then EndIf

Using Altium Designer Objects in scripts
The biggest feature of the scripting system, is that the Interfaces of Altium Designer objects are
available to use in scripts. For example you have the ability to massage design objects on Schematic
and PCB documents through the use of Schematic Interfaces and PCB interfaces.

Therefore the Altium Designer Interfaces are available for use on any script. Normally in scripts, there
is no need to instantiate an interface, you just extract the interface representing an existing object in
Altium Designer and from this interface you can extract embedded or aggregate interface objects and
from them you can get or set property values.

Thus to have access to a schematic document, you invoke the SchServer

VB Script Reference

10 TR0125 (v1.4) Sept 1, 2006

Example
 ' Checks if the current document is a Schematic document

 If SchServer Is Nothing Then Exit Sub

 Set CurrentSheet = SchServer.GetCurrentSchDocument

 If CurrentSheet Is Nothing Then Exit Sub

To have access to a PCB document, you invoke the PCBServer.
Creation of a PCB object using the PCB Object model
Sub ViaCreation

 Dim Board

 Dim Via

 Set Board = PCBServer.GetCurrentPCBBoard

 If Board is Nothing Then Exit Sub

 ' Create a Via object

 Via = PCBServer.PCBObjectFactory(eViaObject, eNoDimension,
eCreate_Default)

 Via.X = MilsToCoord(7500)

 Via.Y = MilsToCoord(7500)

 Via.Size = MilsToCoord(50)

 Via.HoleSize = MilsToCoord(20)

 Via.LowLayer = eTopLayer

 Via.HighLayer = eBottomLayer

 ' Put this via in the Board object

 Board.AddPCBObject(Via)

End Sub

Objects, Interfaces, functions and types in your scripts can be used from the following:

• Client API

• PCB Server API

• Schematic Server API

• Work Space Manager Server API

• Nexus API

• Altium Designer RTL functions

• Parametric processes.

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 11

VB Script Keywords
The scripting system supports the VB Script language which is derived from the Microsoft Active
Scripting language technology.

Reserved words and functions in VB Script
A, B
Abs, Array, Asc, Atn
C
Call, Case, CBool, CByte, CCur, CDate, CDbl, Chr, CInt, Class, CLng, Const, Conversions, Cos,
CreateObject, CSng, CStr
D,E
DateAdd, DateDiff, DatePart, DateSerial, DateValue, Day, Derived Math, Dim, Do, Each, Erase,
Escape, Empty, Eval, Execute, Exit, Exp
F,G, H
False, Filter, For, FormatCurrency, FormatDateTime, FormatNumber, FormatPercent, Function
GetLocale, GetObject, GetRef, Hex, Hour
I, L, M
If, Is, InputBox, Instr, InStrRev, Int, IsArray, IsDate, IsEmpty, IsNull, IsNumeric, IsObject, Join, LBound,
LCase, Left, Len, LoadPicture, Log, LTrim, Maths, Mid, MInute, Month, MonthName, MsgBox
N, O
Next, Nothing, Now, Null, Oct, On Error
P,R
Private, Property, Public, Randomize, ReDim, Rem, RTrim, Replace, RGB, Right, Rnd, Round
S, T
ScriptEngine, ScriptEngineBuildVersion, ScriptEngineMajorVersion, ScriptEngineMinorVersion,
Second, Select, Set, SetLocale, Sgn, Sin, Space, Split, Sqr, Stop, StrComp, String, StrReverse, Sub,
Tan, Then, Time, Timer, Timeserial, TimeValue, Trim, True, TypeName
U, V, W, X, Y
UCase, Unescape, While, Wend, With, VarType, Weekday, WeekdayName, Year

VB Script Reference

12 TR0125 (v1.4) Sept 1, 2006

VB Script Statements
In this section:

• Conditional statements

• Expressions and Operators

Conditional statements
The main conditional statements supported by the VB Script;

• If Then

• For Next Loop

• Exit For

• For Each Next

• Do Loop

• While WEnd

• Select Case

You have to be careful to code your scripts to avoid infinite loops, ie the conditions will eventually be
met.

The If.. Then Statement
The syntax is
If Condition Then

Else If AnotherCondition Then

Else

End If

The For Loop
The For Next statement repeatedly loops through a block of code. The basic syntax is;
For counter = start to end

 ' block of code here

Next

The Exit For
The Exit For statement exits a For loop prematurely.
For counter = start to end

 if condition then Exit For

Next

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 13

The For Each Loop
The For Each loop is a variation on the For loop which is designed to iterate through a collection of
objects as well as elements in an array. The general syntax is;
For Each ObjectVar in Collection

 ' block of code here

Next

The Do Loop
The Do Loop has several loop variations.

1.
Do while until condition

 ' code block

Loop

2.
Do

 ' code block

Loop while until condition

3.
Do

 ' code block

Loop

The While WEnd Loop
The While WEnd statement repeatedly loops through a block of code. The basic syntax is;
While until condition

 ' code block

WEnd

The Select Case Statement
You can also use the SELECT statement if you want to select one of many blocks of code to execute:
select case payment

 case "Cash"

 msgbox "pay cash"

 case "MasterCard"

 msgbox "pay by Mastercard"

 case Else

VB Script Reference

14 TR0125 (v1.4) Sept 1, 2006

 msgbox "Unknown payment method"

end select

Expressions and Operators
An expression is a valid combination of constants, variables, literal values, operators and function
results. Expressions are used to determine the value to assign to a variable, to compute the parameter
of a function, or to test for a condition. Expressions can include function calls.

VB Script has a number of logical, arithmetic, Boolean and relational operators. Since these operators
are grouped by the order of precedence which is different to the precedence orders used by Basic, C
etc. For example, the AND and OR operators have precedence compared to the relational one.
Arithmetic Operators

+ Addition

- Subtraction

* Multiplication

/ Division

\ Division with integer result

^ Exponentiation

Mod Modulo

Comparison Operators (lowest precedence)

= Test whether equal or not.

<> Test whether not equal or not.

< Test whether less than or not.

> Test whether greater than or not.

<= Test whether less than or equal to or not.

>= Test whether greater than or equal to or not.

Is Compares two object reference variables.

String Operators

& Concatenation

Logical Operators

Not Logical NOT

And Logical AND

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 15

Or Logical OR

XOR

Eqv

Imp

&

VB Script Reference

16 TR0125 (v1.4) Sept 1, 2006

VB Script Sub routines and functions
In this section:

• Passing parameters to procedures

• Dates Times

• File IO Routines

• Math Routines

• String Routines

• Server Process Routines.

Passing parameters to Sub routines and functions
When you define a function or sub routine in a script that can accept parameters, you can pass
variables to the function or sub routine in two ways: by reference or by value.
To declare the method that parameters are passed, use the ByRef or ByVal keywords in the
parameter list when defining the function or sub routine in a Sub or Function statement. For example,
the following code fragment defines a sub routine that accepts two parameters. The first is passed by
value and the second by reference:

Sub Test (ByVal Param1 As Integer , ByRef B As String)

The difference between the two methods is that ByRef passes a reference to the variable passed and
allows the sub routine or function to make changes to the actual variables that are passed in as
parameters (this is the default method of passing parameters and is used if the method is not explicitly
declared).
The ByVal passes the value of the variable only. The sub routine or function can use this value, but the
original variable passed is not altered.

The following examples illustrate the differences between methods. The main procedure is as follows:

Sub Main

 Dim X, Y

 X = 45 : Y = "Number"

 Test X, Y ' Call to a subprocedure called Test.

 MsgBox X

 MsgBox Y

End Sub

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 17

The above procedure includes a call to a subprocedure, Test. If the subroutine is defined as follows:

Sub Test (ByRef A, ByRef B)

 B = B & " = " & A : A = 10*A

End Sub

then the variables X and Y in the main procedure are referenced directly by the sub routine. The result
is that the values of X and Y are altered by the sub routine so that after the Test is executed X = 450
and Y = "Number = 45".

If, however, the sub routine is defined as follows:

Sub Test (ByVal A, ByVal B)

 B = B & " = " & A : A = 10*A

End Sub

Then after Test is executed X = 45 and Y = "Number", i.e. they remain unchanged.

If the sub routine is defined as follows:

Sub Test (ByRef A, ByVal B)

 B = B & " = " & A : A = 10*A

End Sub

Then after Test is executed, X = 450 and Y = "Number". Because Y was passed by value, it remains
unchanged.
You can override the ByRef setting of a function or sub routine by putting parentheses around a
variable name in the calling statement. Calling Test with the following statement:
 Test (X), Y
would pass the variable X by value, regardless of the method defined for that parameter in the
procedure definition.

VB Script Reference

18 TR0125 (v1.4) Sept 1, 2006

Dates and Times routines
The VB Script language set supports a set of Date/Time routines and a few routines outlined below:

• Date

• Day

• Hour

• IsDate

• Minute

• Month

• Now

• Second

• Time

• Year

File IO Routines
The VB Script language set supports a set of File IO routines:

• Dir

• FileLen

• FileTimeDate

• FileCopy

• Kill

• Name

• RmDir

• MkDir

Math Routines
The VB Script language set supports a set of Math routines:

• Abs

• Atn

• Cos

• Exp

• Log

• Not

• Oct

• Rnd

• Sin

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 19

• Sqn

• Tan

String Routines
The VB Script language set supports a set of String routines and a few string routines outlined below:

• Asc

• Chr

• Format

• InStr

• InStrRev

• LCase

• Len

• Left

• Mid

• Right

• Str

• Trim

• LTrim

• RTrim

• UCase

Server Process Routines
The server process routines are used when you are dealing with processes in your scripts especially if
you need to extract or set strings for the parameters of processes.
To execute processes and parameters in scripts, use the following functions
• AddColorParameter

• AddIntegerParameter

• AddLongIntParameter

• AddSingleParameter

• AddWordParameter

• GetIntegerParameter

• GetStringParameter

• ResetParameters

• RunProcess
Useful functions
• SetCursorBusy

• ResetCursor

VB Script Reference

20 TR0125 (v1.4) Sept 1, 2006

• CheckActiveServer

• GetActiveServerName

• GetCurrentDocumentFileName

• RunApplication

• SaveCurrentDocument
Useful Dialogs
• ConfirmNoYes

• ConfirmNoYesCancel

• ShowError

• ShowInfo

• ShowWarning

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 21

Forms and Components
Although Forms and Components are based on Borland Delphi's Visual Component Library, you still
use the Tool Palette to drop controls on a form and generate VB Script based event handlers and
write code in VB Script language.

In this section:

• Components

• Designing Script Forms

• Writing Event Handlers.

Components
The scripting system handles two types of components: Visual and Nonvisual components. The visual
components are the ones you use to build the user interface, and the nonvisual components are used
for different tasks such as these Timer, OpenDialog and MainMenu components. You use the Timer
nonvisual component to activate specific code at scheduled intervals and it is never seen by the user.
The Button, Edit and Memo components are visual components for example.

Both types of components appear at design time, but non visual components are not visible at runtime.
Basically components from the Tool Palette panel are object orientated and all these components
have the three following items:

• Properties

• Events

• Methods

A property is a characteristic of an object that influence either the visible behaviour or the operations of
this object. For example the Visible property determines whether this objet can be seen or not on a
script form.

An event is an action or occurrence detected by the script. In a script the programmer writes code for
each event handler which is designed to capture a specific event such as a mouse click.

A method is a procedure that is always associated with an object and define the behavior of an object.

All script forms have one or more components. Components usually display information or allow the
user to perform an action. For example a Label is used to display static text, an Edit box is used to
allow user to input some data, a Button can be used to initiate actions.

Any combination of components can be placed on a form, and while your script is running a user can
interact with any component on a form, it is your task, as a programmer, to decide what happens when
a user clicks a button or changes a text in an Edit box.

The Scripting system supplies a number of components for you to create complex user interfaces for
your scripts. You can find all the components you can place on a form from the Toolbox palette.
To place a component on a form, locate its icon on the Tool Palette panel and double-click it. This
action places a component on the active form. Visual representation of most components is set with
their set of properties. When you first place a component on a form, it is placed in a default position,

VB Script Reference

22 TR0125 (v1.4) Sept 1, 2006

with default width and height however you can resize or re-position this component. You can also
change the size and position later, by using the Object Inspector.

When you drop a component onto a form, the Scripting system automatically generates code
necessary to use the component and updates the script form. You only need to set properties, put code
in event handlers and use methods as necessary to get the component on the form working.

Designing Script Forms
A script form is designed to interact with the user within the Altium Designer environment. Designing
script forms is the core of visual development in the Altium Designer. Every component you place on a
script form and every property you set is stored in a file describing the form (a DFM file) and has a
relationship with the associated script code (the VBS file). Thus for every script form, there is the VBS
file and the corresponding DFM file.

When you are working with a script form and its components, you can operate on its properties using
the Object Inspector panel. You can select more than one component by shift clicking on the
components or by dragging a selection rectangle around the components on this script form. A script
form has a title which is the Caption property on the Object Inspector panel.

Creating a new script form
With a project open in Altium Designer, right click on a project in the Projects panel, and a pop up
menu appears, click on the Add New to Project item, and choose Script Form item. A new script form
appears with the Form1 name as the default name.
Displaying a script form
In a script, you will need to have a routine that displays the form when the script form is executed in
Altium Designer. Within this routine, you invoke the ShowModal method for the form. The Visible
property of the form needs to be false if the ShowModal method of the script form is to work properly.
ShowModal example
Sub RunDialog

 DialogForm.ShowModal

End Sub

The ShowModal example is a very simple example of displaying the script form when the RunDialog
from the script is invoked. Note, you can assign values to the components of the DialogForm object
before the DialogForm.ShowModal is invoked.
ModalResult example
sub bOKButtonClick(Sender)

 ModalResult := mrOK

end sub

sub bCancelButtonClick(Sender)

 ModalResult := mrCancel

end sub

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 23

sub RunShowModalExample

 'Form Visible property must be false for ShowModal to work properly.

 If Form.ShowModal = mrOk Then ShowMessage("mrOk")

 If Form.ShowModal = mrCancel Then ShowMessage("mrCancel")

end sub

The ModalResult property example here is a bit more complex. The following methods are used for
buttons in a script form. The methods cause the dialog to terminate when the user clicks either the OK
or Cancel button, returning mrOk or mrCancel from the ShowModal method respectively.

You could also set the ModalResult value to mrOk for the OK button and mrCancel for the Cancel
button in their event handlers to accomplish the same thing. When the user clicks either button, the
dialog box closes. There is no need to call the Close method, because when you set the ModalResult
method, the script engine closes the script form for you automatically.
Note, if you wish to set the form's ModalResult to cancel, when user presses the Escape key, simply
enable the Cancel property to True for the Cancel button in the Object Inspector panel or insert
Sender.Cancel := True in the form's button cancel click event handler.

Accepting input from the user
One of the common components that can accept input form the user is the EditBox component. This
EditBox component has a field where the user can type in a string of characters. There are other
components such as masked edit component which is an edit component with an input mask stored in
a string. This controls or filters the input.

The example below illustrates what is happening, when user clicks on the button after typing something
in the edit box. That is, if the user did not type anything in the edit component, the event handler
responds with a warning message.
sub TScriptForm.ButtonClick(Sender)

 If Edit1.Text = “” Then

 ShowMessage(“Warning - empty input!”)

 Exit

 End

 ' do something else for the input

End sub

Note, A user can move the input focus by using the Tab key or by clicking with the house on another
control on the form.
Responding to events
When you press the mouse button on a form or a component, Altium Designer sends a message and
the Scripting System responds by receiving an event notification and calling the appropriate event
handler method.

Writing Event Handlers
Each component, beside its properties, has a set of event names. You as the programmer decide how
a script will react on user actions in Altium Designer. For instance, when a user clicks a button on a

VB Script Reference

24 TR0125 (v1.4) Sept 1, 2006

form, Altium Designer sends a message to the script and the script reacts to this new event. If the
OnClick event for a button is specified it gets executed.

The code to respond to events is contained in event handlers. All components have a set of events that
they can react on. For example, all clickable components have an OnClick event that gets fired if a
user clicks a component with a mouse. All such components have an event for getting and loosing the
focus, too. However if you do not specify the code for OnEnter and OnExit (OnEnter - the control has
focus; OnExit - the control loses focus) the event will be ignored by your script.

Your script may need to respond to events that might occur to a component at run time. An event is a
link between an occurrence in Altium Designer such as clicking a button, and a piece of code that
responds to that occurrence. The responding code is an event handler. This code modifies property
values and calls methods.
List of properties for a component
To see a list of properties for a component, select a component and in the Object Inspector, activate
the Properties tab.

List of events for a component
To see a list of events a component can react on, select a component, and in the Object Inspector
activate the Events tab. To create an event handling procedure, decide on what event you want your
component to react, and double click the event name.
For example, select the Button1 component from the Toolbox panel and drop it on the script form, and
double click next to the OnClick event name. The scripting system will bring the Code Editor to the top
of the Altium Designer and the skeleton code for the OnClick event will be created.

For example, a button has a Close method in the CloseClick event handler. When the button is clicked,
the button event handler captures the on click event, and the code inside the event handler gets
executed. That is, the Close method closes the script form.
In a nutshell, you just select a button component, either on the form or by using the Object Inspector
panel, select the Events page, and double click on the right side of the OnClick event, a new event
handler will appear on the script. OR double click on the button and the scripting system will add a
handler for this OnClick event. Other types of components will have completely different default
actions.
List of methods for a component
To see a list of methods for a component, see the Components Reference.

Using components in your scripts
Dropping components on a script form
To use components from the Tool Palette panel in your scripts, you need to have a script form first
before you can drop components on the form. Normally when you drop components on a script form,
you do not need to create or destroy these objects, the script form does them for you automatically.

The scripting system automatically generates code necessary to use the component and updates the
script form. You then only need to set properties, put code in event handlers and use methods as
necessary to get the script form working in Altium Designer.

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 25

Creating components from a script
You can also directly create and destroy components in a script – normally you don’t need to pass in
the handle of the form because the script form takes care of it automatically for you, thus you just
normally pass a Nil parameter to the Constructor of a component.

For example, you can create and destroy Open and Save Dialogs (TOpenDialog and TSaveDialog
classes as part of Borland Delphi Run Time Library).

VB Script Reference

26 TR0125 (v1.4) Sept 1, 2006

Index
A

About VB Script examples6

Adding scripts to a project ..3

Assigning a VB script to a process launcher............5

C

Components for VB Scripts....................................21

Conditional statements...12

Creating new VB scripts ...2

D

Dates Times for VB ..18

Designing Script Forms with VB Script22

E

Executing a script in DXP...3

Exploring the VB Script Language1

Expressions and Operators in VB Script................14

F

File IO Routines..18

Forms and Components with VB Script21

I
Including comments in VB scripts9

L

Local and Global variables in VB7

M

Math Routines for VB ...18

P

Passing parameters to procedures.........................16

R

Reserved words in VB Script..................................11

S

Server Process Routines..19

Splitting a line of VB script..9

String Routines for VB ..19

U

Using components in your scripts...........................24

Using DXP Objects in VB scripts..............................9

V

VB Script Functions ..16

VB Script Keywords..11

VB Script naming conventions..................................7

VB Script source files ...2

VB Script Statements ...12

VB Subroutines and Functions7

W

Writing Event Handlers...23

Writing VB Script scripts ...7

VB Script Reference

TR0125 (v1.4) Sept 1, 2006 27

Revision History

Date Version No. Revision

01-Dec-2004 1.0 New product release

26-Apr-2005 1.1 Altium Designer

15-Dec-2005 1.2 Updated for Altium Designer 6

6-Jul-2006 1.3 Updated for Altium Designer 6.3 DXP references changed to Altium
Designer. For To Next syntax corrected and While WEnd loop added.

1-Sept-2006 1.4 Updated for Altium Designer 6.4 Typing of variables corrected. Variables
are typeless and functions declaration clarified.

Software, hardware, documentation and related materials:

Copyright © 2007 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use
only and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications
of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or
imprisonment. Altium, Altium Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk,
P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective logos are trademarks or
registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks
referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

	Exploring the VB Script Language
	VB Script source files
	Creating new scripts
	Adding scripts to a project
	Executing a script in Altium Designer
	Assigning a script to a menu, key or toolbar
	About VB Script examples

	Writing VB Script scripts
	VB Script naming conventions
	Local and Global variables
	Subroutines and Functions
	Including comments in scripts
	Splitting a line of script
	Using Altium Designer Objects in scripts

	VB Script Keywords
	Reserved words and functions in VB Script

	VB Script Statements
	Conditional statements
	Expressions and Operators

	VB Script Sub routines and functions
	Passing parameters to Sub routines and functions
	 Dates and Times routines
	File IO Routines
	Math Routines
	String Routines
	Server Process Routines

	Forms and Components
	Components
	Designing Script Forms
	Writing Event Handlers
	Using components in your scripts

	Index
	 Revision History

