
How to Write Portable Rexx

 by Howard Fosdick ©

2012

Rexx o�ers a number of advantages as a cross-platform
language. It has a strong standard that every interpreter upholds,
called TRL-2. It runs on nearly every operating system and platform.
And it is an easy language to maintain, so that if you do have to make
changes when porting Rexx, this takes less time and e✁ort than it
does in many other programming languages. This primer tells how to
write portable Rexx code.

The Two Rexx Standards

First, understand the two Rexx standards and decide which you’ll
code to. Every Rexx interpreter conforms to the language de✂nition
set out in Michael Cowlishaw’s de✂nitive work, The Rexx Language
2nd ed – commonly referred to as TRL-2.

The American National Standards Institute codi✂ed the language
further in their ANSI-1996 Rexx Standard. The ANSI standard sets out
a few more required language elements as a superset of TRL-2. This
document summarizes the di✁erences between the TRL-2 and
ANSI-1996 standards.

Writing Portable Rexx Code

To write portable Rexx code -- or to port existing Rexx code from one
platform to another -- your ✂rst task is to identify what parts of Rexx
programs may not be portable. These include --

� Operating system commands
� Commands to non-portable interfaces (eg: GUIs, databases, etc)
� Interpreter-speci✂c extensions (eg: Regina Rexx extensions

versus TSO-REXX language extensions)
� I/O incompatiblities (especially when using non-standard Rexx

I/O, for example, the EXECIO command of mainframe Rexx)
� Operating systems and interface error codes may vary across

platforms

This diagram summarizes what Rexx components are portable versus
those that may not be, depending on the situation --

There are a number of ways around portability issues—

� Use packages like RexxUtil (aka RegUtil) that are speci�cally
designed to render operating system functions portable.

� Code strictly to TRL-2 standards (since all Rexx interpreters
meet these standards)

� Use TRL-2 standard I/O functions
� Minimize operating system commands (since these are often OS

dependent)
� Ensure interfaces are portable across the systems you’re

dealing with
(example— if you code to a database interface, make sure that
database or
its interface runs on all the platforms that concern you)

� Write a routine that informs your program which platform it is
running on, then execute IF or SELECT statements to run
platform-speci�c code

� Isolate platform-speci�c code in its own subroutines or functions
� Isolate error-handling to Rexx’s exception-handlers, and manage

platform-specifc errors there. Or isolate error-handling to your
own platform-speci�c routines.

Writing a Routine to Discover the Environment

A cross-platform Rexx script needs a subroutine or function to
determine the platform it runs on. This routine can then be invoked in
the program when it needs this information to execute correct code
for the platform.

The subroutine will (minimally) use the parse source system and
parse version instructions. It may also issue address to determine
the default command environment. Here’s an example:

/* WHERE AM I: */
/* */
/* This script learns about its environment and determines */

/* exactly which Windows or Linux OS it runs under. */

parse version language level date month year .
parse source system invocation filename .

language = translate(language) /* ensure using Regina Rexx */
if pos('REGINA',language) = 0 then
 say 'ERROR: Interpreter is not Regina:' language

say 'Interpreter version/release date:' date month year
say 'Language standards level is: ' level
say 'Version information from an OS command follows...'

/* determine operating system, get its version/release info */

select
 when system = 'WIN32' then
 'ver'
 when system = 'LINUX' then
 'uname -a'
 otherwise
 say 'Unexpected SYSTEM:' system
end

if rc <> 0 then /* write message if OS command failed */
 say 'Bad return code on OS Version command:' rc

/* Code from Rexx Programmers Reference */

Here’s a similar routine written in Open Object Rexx (ooRexx):

/***/
/* WHICH OS
/ /
*/
/* Identifies the operating system by the command shell. */
/***/
os = .operating_systems~new /* create a new object */

os~write_command_shell /* invoke the method to do work */

exit 0 /* always code EXIT instruction */

::class operating_systems /* class with 2 methods following it */

 ::method init /* method INIT prompts for shell name*/
 expose shell /* EXPOSE the shared variable */
 say 'Enter the shell name:' /* prompt for and read user input */
 parse pull shell .
 return

 ::method write_command_shell /* this method determines OS */
 expose shell
 select /* determine OS for this shell */
 when shell = 'CMD' then string = 'DOS or Windows 9x'
 when shell = 'COMMAND' then string = 'Windows 2K/2003/XP'
 when shell = 'ksh' then string = 'Korn Shell'
 when shell = 'csh' then string = 'C Shell'
 otherwise string = 'unknown'
 end
 say 'OS is:' string /* write out the OS determined */
 return 0

Steve Ferg provides similar classic Rexx code in his discussion on
porting Rexx scripts here.

Running Di�erent Code on Di�erent Platforms

Once you have a routine to determine which platform your script is
running on, select the platform dependent code to run like this—

 /* This code runs a different routine depending on its */
 /* host operating system. */

 my_platform = determine_platform_routine()

 select
 when my_platform = ‘WIN32’ then
 /* insert Windows code or a routine here */

 when my_platform = ‘UNIX’ | ‘LINUX’ then
 /* insert UNIX/LINUX code or routine here */

 otherwise
 say ‘Unexpected, unrecognized system—error’

 end /* Code from Rexx Programmers Reference */

Use IF statements or a SELECT statement to run code appropriate to
the platform the script runs on. The platform-speci✁c code could
either be written in-line, or invoked through a subroutine or function.
Use a subroutine if there’s much code involved. OS-speci✁c error
handling within each subroutine is also a good idea.

How Di�erent are Your Targets?

Part of your challenge is determined by the systems you’re porting to.
How similar or di✁erent are they?

For one site I wrote code that ran on Oracle/Sun Solaris, HP’s HP/UX,
and IBM’s AIX. These are all Unix variants, so writing and testing
cross-platform code was pretty easy.

Contrast this to another project, where my code had to run under both
Windows and Linux. Not only are these two systems more dissimilar,
but Windows systems have slightly di✁erent OS command sets
depending on the OS version. Tracking the slight di✁erences in
Windows commands across Windows 95/98/ME/XP/Vista/7/8 is
challenging!

Always see if you can limit your porting to the smallest number of
operating systems and versions possible. For example, a dual-platform
script is easier to write if it only supports Ubuntu 10.04 and Windows
7 than if it must run on all Linux distros and all Windows versions.

Conclusion

Rexx ports well across systems. It is highly standardized, runs on
many di✁erent systems, and is easy to change if you do have to write
platform-speci✂c code. I hope that the basic principles in this article
help.

