
technica l contributions
- 2 6 -

The design of the REXX
language

by M. F. Cowlishaw

One way of classifying computer languages is by two
classes: languages needing skilled programmers, and
personal languages used by an expanding population
of general users. REstructured eXtended eXecutor
(REXX) is a flexible personal language designed with
particular attention to feedback from its users. It has
proved to be effective and easy to use, yet it is suffi-
ciently general and powerful to fuffil the needs of many
demanding professional applications. REXX is system
and hardware independent, so that it has been possi-
ble to integrate it experimentally into several operating
systems. Here REXX is used for such purposes as com-
mand and macro programming, prototyping, educa.
tion, and personal programming. This paper introduces
REXX and describes the basic design principles that
were followed in developing it.

C o m p u t e r languages be classified in may many
ways. One way, for example, is to divide them

into two usability classes: those for data processing
professionals and those for the rest of the users. Most
languages currently available (such as FORTRAN,
COBOL, and c) have been designed as tools for profes-
sionals and require a significant amount of training
before they can be used effectively. A few languages
(notably BASlC and LOGO) have been designed with
more general users in mind. As a result, these lan-
guages have found wide application in the field of
personal computers. BASIC especially is widely used,
but it was originally designed for simpler applica-
tions. The popularity of BASIC continues, and there
have been many attempts to improve its structure
and syntax. This has resulted in many different dia-
lects of the language.

REstructured eXtended eXecutor (REXX) is a new
language designed for the general user yet suitable
for many professional applications. REXX borrows
significantly from earlier languages, but it differs in
one fundamental respect. Instead of being designed

(consciously or otherwise) to be easy to compile or
easy to interpret, it is designed (with the help of
feedback from hundreds of users) to be easy to use.

Three major factors affect the usability of a language.
First, the basic concepts of a language affect its
syntax, grammar, and consistency. Second, the his-
tory and development of a language determine its
function, usability, and completeness. Third, but
quite independently, the implementation of a lan-
guage affects its acceptability, portability, and distri-
bution. This paper introduces REXX and then dis-
cusses basic concepts and developmental history as
applied to the design of the REXX language.

There are several experimental implementations of
the REXX language within IBM for both large and
small machines. One of these, by the author, has
become a part of the Virtual Machine/System Prod-
uct (VM/SP), as the System Product Interpreter for
the Conversational Monitor System (CMS). The most
complete published documentation of the language
may be found in Reference I.

What kind of language is REXX?

REXX is a new language that allows programs and
algorithms to be written in a clear and structured
way. Its primary design goal was that it should be
genuinely easy to use both by computer professionals
and by the more casual general users. A language
that is designed to be easy to use must be adept at

© Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-baNd and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

326 co~s,Aw

SIGPLAN Notices, V22 #2, February 1987

SYSTEMS JOORNAL VO~ 23 NO 4 I~

Reprinted by permission of IBM Corp.

- 2 7 -

manipulating the kinds of symbolic objects that peo-
ple normally deal with: words, numbers, names, and
so on. Most of the features in REXX are included to
make this kind of symbolic manipulation easy. REXX
is also designed to be highly system independent, but
it has the capability of issuing both commands and
conventional interlanguage calls to its host environ-
ment.

The REXX language structure covers several applica-
tion areas that traditionally have been serviced by
fundamentally different types of programming lan-
guage.

Personal programming. REXX provides considerable
function with powerful character and mathematical
abilities in a simple framework. Short programs may

Command program interpreters are
increasing in importance in modern

operating systems.

be written with minimum overhead, yet facilities
exist to allow the writing of robust large programs.
The language is well suited to interpretation and is
therefore rather suitable for the applications for
which such languages as BASIC and LOGO are cur-
rently used. 23 REXX has proved to be an easy lan-
guage to learn and to teach.

Tailoring user commands. Command program inter-
preters are increasing in importance in modern op-
erating systems. Nearly all operating systems include
some form of EXEC, SHELL, or BAT languages. 4-7 In
many cases such a language is so embedded into the
operating system that it is unlikely to be of use
outside its primary environment, as for example
Mxec. 8 There is, however, a clear trend toward pro-
viding command programming languages that are
both powerful and capable of more general usage. 9-~2
REXX carries this principle further by being a lan-
guage that is designed primarily for generality but
also for suitability as a command programming lan-
guage.

Within IBM, many REXX EXECS for the Conversational
Monitor System (CMS) have been written. Many of
these EXECS embody hundreds and even thousands
of lines. Product models consisting of over 20 000
lines of REXX have been reported, and at least one
IBM location now reports applications involving over
one million lines of code written in REXX. 13

Macros. Many applications are programmable by
means of macros. In the data processing world, there
is a different macro language for almost every type
of application. There are macro languages for edi-
tors, assemblers, interactive systems, text processors,
and, of course, for other languages. The work of
Stephenson z4 and others has highlighted similarities
between these applications and the need for a com-
mon language. Because REXX is essentially a charac-
ter-manipulation language, it can provide the macro
facility for all these applications.

Macro languages often have unusual qualities and
syntax that restrict their use to skilled programmers.
REXX has a more conventional syntax. It is also a
flexible language. Thus, it allows the same jobs to be
clone in less time by less skilled personnel.

Prototyping. The current interpreter implementation
of REXX can be highly interactive. Therefore, as
might be expected, developing programs in REXX is
very fast. This productivity advantage, together with
the ease of interfacing REXX tO system utilities for
display and for data input and output, makes the
language very suitable for modeling applications and
products. It has also proved to be useful for setting
up experimental systems for usability and human
factors studies.

The design of REXX is such that the same language
can be effectively and efficiently used for many dif-
ferent applications that would otherwise require the
learning of several languages.

The REXX language

REXX is a language that is superficially similar to
earlier languages. However, every aspect of REXX has
been critically reviewed and usually differs from
other languages in ways that make REXX more suited
to general users. REXX was designed as an entirely
new language, without the requirement to be com-
patible with any earlier language. This has allowed
important improvements to be included. The follow-
ing description is intended as an introduction to the
language. Because many of the subtleties of REXX are

IBM SYSTEMS JOURNAL VOL 23, NO 4, 1984 COWUSHAW 3 2 7

- 2 8 -

best appreciated with use, the reader is urged to use
the language.

Language summary. The REXX language is composed
of a rather small number of instructions and options,
yet it is powerful. Where a desired function is not
built in, it can be added easily by using one of the

All the operators act upon strings of
characters of any length.

several mechanisms for external interfacing. The
following summary introduces most of the features
of REXX. Full details may be found in Reference 1.

REXX provides a conventional selection of control
constructs that include IF-THEN-ELSE, SELECT-WHEN-
OTHERWISE-END, and several varieties of DO-END for
grouping and repetition. These constructs are similar
to those of PL/I, but with several enhancements and
simplifications. The DO looping construct can be
used to step a variable TO some limit, FOR a specified
number of iterations, and WHILE or UNTIL some
condition is satisfied. DO FOREVER is also provided.
Loop execution may be modified by LEAVE and
ITERATE instructions that significantly reduce the
complexity of many programs. A SlGNAL instruction
is provided for abnormal outward transfer of control,
such as error exits and computed branching.

REXX expressions are general in that any operator
combinations may be used, provided of course that
the data values are valid for those operations. There
are nine arithmetic operators (including integer di-
vision, remainder, and exponentiation), three con-
catenation operators, eight comparative operators
(including some that test for exact equality), and four
logical operators. All the operators act upon strings
of characters of any length, and the strings are typi-
cally limited only by the amount of virtual storage
available.

Figure 1 shows a sample program, called HELLO, that
illustrates both expressions and a conditional instruc-
tion. The expression on the last SAY (display) instruc-

tion concatenates the string 'Hello' to the variable
ANSWER with a blank between them. The blank is
here a valid operator that means concatenate with
blank. The string "!" is then directly concatenated to
the result built up so far. These simple concatenation
operators make it very easy to build up strings and
commands, and these operators may be freely mixed
with arithmetic operations.

In REXX, any string or symbol may be a number.
Numbers are all real numbers and may be specified
in exponential notation if desired. An implementa-
tion may use appropriately efficient internal repre-
sentations, of course. The arithmetic operations in
REXX are completely defined, so that different imple-
mentations must always give the same results.

The NUMERIC instruction may be used to select the
arbitrary precision of calculations, which, for exam-
ple, may calculate with 1000 or more significant
digits. The same instruction may also be used to set
the ficzz to be used for comparisons, and the expo-
nential notation (scientific or engineering) that REXX
is to use to present results. The term fuzz refers to
the number of significant digits of error permitted
when making a numerical comparison.

Variables all hold strings of characters and cannot
have aliases under any circumstances. The simple
compound variable mechanism allows the use of
multidimensional arrays that have the property of
being indexed by arbitrary character strings. These
are, in effect, content-addressable data structures and
permit lists and trees to be built quite simply. Groups
of variables (arrays) with a common stem to their
names can be set, reset, or manipulated by references
to that stem alone.

The example JUSTONE shown in Figure 2 is a routine
that removes all duplicate words from a string of
words. Figure 2 also shows some of the built-in string
parsing available with the PARSE instruction. This
instruction provides a fast and simple way of decom-
posing strings of characters (or data acquired from
the user or external environment) using a primitive
form of pattern matching. A string may be split into
parts using various forms of patterns and then as-
signed to variables by words or as a whole.

A variety of internal and external calling mecha-
nisms are defined. The most primitive calling mech-
anism is the command, which is similar to a message
in the Smalltalk-80 system, ~5 and in which an in-
struction that consists of just an expression is eval-

3 2 8 COWUSHAW IBM SYSTEMS JOURNAL, VOL 23, NO 4, 1984

- 2 9 -

Figure 1 A sample program, called HELLO, illustrating expressions and a conditional instruction

ilili i! i!i iiiiii!i iili iiii!!!i iiii!!iiiiiiill !iiii!!!iiiiiiiiiiill iiii!ii!!!!ii!ii !iiiiii!i!ii! i i!iiiill i i iiiiiii ¸ ii iiiiiil /i ?ii/i ://ill ii i if! !/!51 iii ii! i!ii! !i! ii ili!i!!i !!i(ii?ii!i! i i!iii i iiiiiii iii iili !ii i!iiiii i iiiill iil iil iiii!~i!ii!ii!~i!!iiiiii!iiil i iiii!il !i!!i!iiii ii i!iiii !!i!iiiiiiii!iiiiiliiii!iii!ii!ili!!i

/* A short program to greet a new user.

/* First display a prompt:

say 'Please type your name and then press ENTER:'

parse pull answer

,/

./

/* Get the reply into ANSWER */

/* If nothing was typed,

/* otherwise echo the name politely.

if answer=" then say 'Hello Stranger!'

else say 'Hello' answer'!'

then use a fixed greeting, */

./

ii:ii[~l

!!!ii!:i!i~!
iiiilili~ii~l
iii~i!!iii!!:l

i!i!;:!]
!~!i!

uated. The resulting string of characters is passed to
the currently selected external environment, which
might be an operating system, an editor, or any other
functional object. The REXX programmer can also
invoke functions and subroutines that may be inter-
nal to the program, built in (part of the language),
or external to the program. Within an internal rou-
tine. variables may be shared with the caller or
protected, that is, they may be local to the routine.
If protected, selected variables or groups of variables
belonging to the caller may be exposed to the routine
for read/write access.

Certain types of exception handling are supported.
A simple mechanism associated with the S I G N A L
instruction allows the trapping of run-time errors,
halt conditions (external interrupts), command er-
rors (errors resulting from external commands), and
the use of uninitialized variables. No method of
return from an exception is provided in the current
language definition.

The INTERPRET instruction, which is intended to be
supported by interpreters only, allows any string of
REXX instructions to be interpreted dynamically. It

is useful for some kinds of interactive or interpretive
environments, and can be used to build the almost
trivial instant calculator program, called SAY, shown
in Figure 3.

The language defines an extensive debugging or trac-
ing facility, though it is recognized that some imple-
mentations may be unable to support the whole
package. The tracing options allow various levels
and subsets of instructions to be traced (commands,
labels, all, and so on) and the display of various levels
of expression evaluation results, either intermediate-
calculation results or the final results. Furthermore,
for a suitable implementation, the language describes
an interactive debug option in which the execution
of the program may be halted selectively. Once exe-
cution has paused, the user may then type in any
REXX instruction string (to display/alter variables,
and so on), step to the next pause, or re-execute the
last clause traced.

Fundamental language concepts

Language design is always subtly affected by uncon-
scious biases and by historical precedent. To mini-

IBM SYSTEMS JOURNAL, VOL 23, NO 4, 1984 COWLISHAW 3 2 9

-30-

Figure 2 The routine, called JUSTONE, removes all duplicate words from a string of words

!~i!~i i! !:i;i~iiii!~iiiiiiii~ii!i ~ ! ~i~:ii!i!!iii~i;iiii~;!iiiiiiiii!~iiii~ii i!!~!il ~!!ii!i!i~ili!ii!ili~!i!iii~i!~!iiiiii!!i: ¸ iiii~!ill !~ i!!~!!ii!!ii~!i ! !ii!!ii~

/* This routine removes duplicate words from a string, and */

/* illustrates the use of a compound variable (HADWORD) that */

/* is indexed by arbitrary data (words). */

Justone: procedure /* make all variables private */

parse arg wordlist /* get the list of words */

hadword.=O /* show all possible words as new */

ii!iii~il

outlist=" /* initialize the output list */ iiiil
!iiiiii

do while wordlist -=vv /* loop so long as we have some data */ i!i!ii~ii

/* split WORDLIST into the first word and the remainder */ ilia!
ii!i~i~iii

parse var wordlist word wordlist !~i!~ii

if hadword.word then iterate /* loop again if already had */ i!iiiiiii!i!
i~!ii

hadword.word=l /* remember that we have had this word */ ~

outlist=outlist word /* and add this word to output list */

end

return outlist /* finally return the result */

mize the effect of bias, a number of concepts have
been chosen and used as guidelines for the design of
the REXX language. Discussed here are the major
concepts that were consciously followed during the
design of REXX. Each topic merits a paper of its own,
and many of these topics are well discussed in the
literature. Unfortunately, these few paragraphs can
be only summaries of fuller discussions and thoughts
on the ideas.

Readability. If there is one concept that has domi-
nated the evolution of REXX syntax it is readability,
which is used here in the sense of perceived legibility.

Readability in this sense seems to be a rather subjec-
tive quality, but the general principle followed in
REXX is that the tokens that form a program can be
written much as one might write them in English,
French, German, and so forth. Although the seman-
tics of R~XX is of course more formal than that of a
natural language, REXX is lexically similar to normal
text.

The structure of the syntax means that the language
readily adapts itself to a variety of programming
styles and layouts. This helps satisfy user preferences
and allows a familiarity of syntax that also increases

3 3 0 COWUSHAW 18M SYSTEMS JOURNAL, VOL 23, NO 4, 1984

- 3 1 -

Figure 3 An instant ca lcu la to r ca l led SAY

/* Simple calculator,

numeric digits 20

parse arg input

interpret 'say' input

interprets input as a REXX expression */

/* Work to 20 significant digits */

/* Get user's input into INPUT */

/* Build and execute SAY instruction */

readability. Good readability leads to enhanced un-
derstandability, thus yielding fewer errors during
both the writing of a program and the reading for
debug or maintenance. Important readability factors
here are the following:

• There is deliberate support throughout the lan-
guage for mixed upper- and tower-case letters,
both for processing data and for the program itself.

• The essentially free format of the language and
the way blanks around tokens are treated allow
the user to lay out the program in the way he feels
is most readable.

• Punctuation is required only when absolutely nec-
essary to remove ambiguity (though it may often
be added according to personal preference, so long
as it is syntactically correct). This relatively toler-
ant syntax noticeably reduces frustration during
use of the language, as compared with experience
with such languages as Pascal.

° Modem concepts of structured programming are
available in REXX and can lead to programs that
are easier to read than they might otherwise be.
Structured programming facilities also make REXX
a good language for teaching the concepts of struc-
tured programming.

• Loose binding between lines and program source
ensures that even though programs are affected by
line ends, they are not irrevocably so. A user may
spread a statement over several lines or put it on
just one line. Statement separators are optional,
except where more than one statement is placed
on a line, again allowing the programmer to adjust
the language to his style.

Natural data typing. Strong typing, in which the
values a variable may take are tightly constrained,

has become a fashionable attribute for languages
over the last ten years. In this author's opinion, the
greatest advantage of strong typing is for the inter-
faces between program modules. Errors within mod-
ules that would be detected by strong typing (and
would not be detected from context) are much rarer
and in the majority of cases do not justify fhe added
program complexity.

REXX, therefore, treats types as naturally as possible.
The meaning of a constant depends entirely on its
usage. All data are defined in the form of the sym-
bolic notation (stnngs of characters) that a user
would normally write to represent the data. Since no
internal or machine representation is exposed in the
language, the need for many data types is reduced.
There are, for example, no fundamentally different
concepts of integer and real. There is just the single
concept of number. Since all data have a defined
symbolic representation, the programmer can always
inspect values, such as, for example, the intermediate
results of an expression evaluation. This means that
numeric computations and all other operations can
be precisely defined and therefore act consistently
and predictably.

The current language definition does not exclude the
future addition of a data-typing mechanism for those
applications that require it, though at present there
seems to be little call for this. The mechanism would
be in the form of ASSERT-like instructions that assign
data type checking to variables during execution
flow. An optional restriction, similar to the existing
trap for uninitialized variables, could be defined to
provide enforced assertion for all variables.

Emphasis on symbolic manipulation. From the user's
point of view, the data that REXX manipulates are in

IBM SYSTEMS JOORNAL VOL 23 NO 4. 1984 COWUSHAW 3:31

- 3 2 -

the form of strings of characters. It is highly desirable
for the user to be able to manage data as naturally
as he would manipulate words on a page or in an
editor. The language therefore has a rich set of char-
acter manipulation operators and functions.

Concatenation is treated specially in REXX. In addi-
tion to a conventional concatenate operator (I I),
there is a new blank operator that concatenates two
data strings together with a blank between. Further-
more, if two syntactically distinct terms, such as a
string and a variable name, are abutted, the data
strings are concatenated directly. These operators
make it especially easy to build up complex data
items and strings and may at any time be combined
with the other operators available to the REXX pro-
grammer. To illustrate this point, consider the SAY
instruction, which consists of the keyword SAY fol-
lowed by any expression. In the following example
of the instruction SAY, if the variable N has the value
~6~

SAY N* 100/50~% ' ARE REJECTS

displays the string

12% ARE REJECTS

Concatenation has a lower priority than arithmetic
operators. The order of evaluation of the expression
is therefore first the multiplication, followed by the
division, then the direct concatenation, and finally
the two concatenate-with-blank operations.

Dynamic scoping. Most languages, especially those
designed to be compiled, rely on static scoping. That
is, the physical position of a statement in the program
source may alter its meaning. Languages that are
interpreted or that have intelligent compilers gener-
ally have dynamic scoping. Here, the meaning of a
statement is affected only by the statements that
have already been executed, rather than those that
precede it in the program source.

Purely dynamic scoping is a characteristic of the
REXX language. Dynamic scoping implies that REXX
may be efficiently interpreted because only minimal
look-ahead is necessary. It also implies that a com-
piler is more difficult to implement. Therefore, the
semantics includes restrictions that considerably ease
the task of the compiler writer. Of greater importance
is the fact that with dynamic scoping a person read-
ing the program need only be aware of the program
above the point at which he is studying. Not only
does this aid comprehension, but it also makes pro-

gramming and maintenance easier when only a dis-
play device is being used.

The GOTO statement is a necessary casualty of dy-
namic scoping. In a truly dynamically scoped lan-
guage, a GOTO cannot be used as an error exit from
a loop. If it were, the loop would never become

Implicit declarations take place
during execution.

inactive. Some interpreted languages detect control
jumping outside the body of the loop and terminate
the loop if this occurs. These languages are therefore
relying on static scoping. REXX instead provides the
abnormal transfer-of-control instruction SIGNAL that
terminates all active control structures when it is
executed. Note that it is not just a synonym for GOTO
because it cannot be used to transfer control within
a loop. Alternative instructions are provided for this
purpose.

Nothing to declare. Consistent with the philosophy
of simplicity, REXX provides no mechanism for de-
claring variables. Variables may of course be docu-
mented and initialized at the start of a program, and
this covers the primary advantages of declarations.
The other, data typing, is discussed earlier in this
paper. Implicit declarations do take place during
execution, but the only true declarations in the REXX
language are the markers or labels identifying points
in the program that may be used as the targets of
signals or internal routine calls.

System independence. The REXX language is inde-
pendent of both system and hardware. REXX pro-
grams, though, must be able to interact with their
environment, and such interactions necessarily have
system-dependent attributes. However, these system
dependencies are clearly bounded, and the rest of
the language has no such dependencies. In some
instances, this leads to added expense in implemen-
tation and language usage, but the advantages are
obvious and well worth the penalties.

As an example, string-of-characters comparison is
normally independent of leading and trailing blanks.

332 ~ w ~ , ~ w ~M SYSTEMS JOURNAL, VOL 23, NO 4, 1984

- 3 3 -

The string" Yes "means the same as "Yes" in most
applications. However, the influence of underlying
hardware has subtly aflbcted this kind of decision, so
that many languages allow only trailing blanks but
not leading blanks. By contrast, REXX permits both
leading and trailing blanks during general compari-
sons.

Limited-span syntactic units. The fundamental unit
of syntax in the REXX language is the clause, which
is a piece of program text terminated by a semicolon,
usually implied by the end of a line. The span of
syntactic units is therefore small, usually one line or
less. This means that the parser can rapidly detect
errors in syntax, which in turn means that error
messages can be both precise and concise.

It is difficult to provide good diagnostics in languages
with large fundamental syntactic units, such as Pas-
cal. A small error can often have a major and un-
expected effect on the parser.

Dealing with reality. The REXX language is a tool for
use by real people to do real work. Any tool must,
above all, be reliable. In the case of a language,
reliability means that it should do what the user
expects. User expectations are generally based on
prior experience, including the use of various pro-
gramming and natural languages, and on the human
ability to abstract and generalize concepts.

It is difficult to define exactly how to meet user
expectations, but it helps to ask the question: Could
there be a high astonishment factor associated with
the new feature? If a feature is accidentally misap-
plied by the user and causes what appears to him to
be an unpredictable result, that feature has a high
astonishment factor and is therefore undesirable. If
a necessary, feature has a high astonishment factor,
it may be necessary to redesign the feature.

Another important attribute of a reliable software
tool is consistency. A consistent language is by defi-
nition predictable, and it is often elegant. The danger
here is to assume that because a rule is consistent
and easily described, it is therefore simple for a user
to understand. Unfortunately, some of the most
elegant of rules can lead to effects that are completely
alien to the intuition and expectations of a user. The
user is a human being, not a computer.

Consistency applied for its own sake can easily lead
to rules that are either too restrictive or too powerful
for general use by human beings. Thus, during its
design, I found that simple rules for REXX syntax

often had to be rethought to make the language a
more usable tool.

Originally, REXX allowed almost all options on in-
structions to be variable--even the names of func-
tions were variable. Many users, however, stumbled
into pitfalls that were side effects of this powerful
generality. For example, the TRACE instruction allows
its options to be abbreviated to a single letter, because
it must be typed often during debugging sessions.
Users therefore often used the instruction TRACE I.
When ! had been used as a variable, perhaps as a
loop counter, the TRACE I instruction could become
TRACE l0 a correct but unexpected action. There-
fore, the TRACE instruction was changed to treat the
symbol as a constant to protect users against such
things happening. As a result, the language became
more complex. A VALUE option on TRACE allows
variability for the experienced user. Similarly, there
is a fine line to tread between concise (terse) syntax
and usability.

Adaptability. Wherever possible, the REXX language
allows for the extension of instructions and other
language constructs. For example, there is a large set
of characters available for future extensions, because
only a restricted set is allowed for the names of
variables (symbols). Similarly, the rules for keyword
recognition allow instructions to be added whenever
required without compromising the integrity of ex-
isting programs that are written in the appropriate
style. There are no globally reserved words, though
a number of words are reserved within the local
context of a single clause.

A language must be adaptable because it certainly
will be used for applications not foreseen by the
designer. Although it has proved to be effective as a
command programming and personal language,
REXX may prove to be inadequate in unforeseeable
future applications. Thus room for expansion and
change is included to make the language more adapt-
able.

Keep the languege small. Every suggested addition
to the language has been considered on the basis of
its likely number of users. My intention was to keep
the language as small as possible, so that users can
rapidly grasp most of the language. This self-imposed
guideline has had a number of beneficial results,
among which are the following:

• The language appears less formidable to a new
u s e r .

• Documentation is smaller and simpler.

IBM SYSTEMS JOURNAL. VOL 23. NO 4. 1984 COWL.ISPIAW 3 3 3

- 3 4 -

• The experienced user can be aware of all the
facilities of the language, and so has the whole tool
at his disposal to achieve a goal.

° There are few exceptions, special cases, and rarely
used embellishments.

• The language is easier to implement.

No defined size or shape limits. The language does
not define limits on the size or shape of any of its
tokens or data, although there may be implementa-
tion restrictions. It does, however, define the mini-
mum requirements that must be satisfied by an
implementation. Wherever an implementation re-
striction has to be applied, the language rules rec-
ommend that it be of such a magnitude that few if
any users are affected by the restriction.

Where implementation limits are necessary, the lan-
guage encourages the implementer to use familiar
and memorable values for the limits. For example,
250 is preferable to 255, 500 is preferable to 512,
and so on. It is unnecessary to force artifacts of the
binary system onto a population that uses only the
decimal system. Only a tiny minority of future pro-
grammers will deal with binary representations of
quantities.

Language design concepts

The REXX language was designed over the four-year
period from 1979 through 1982, at the IBM United
Kingdom Laboratories Limited at Hursley, England,
and at the IBM Thomas J. Watson Research Center
at Yorktown Heights, New York. The process was
first to design and document a basic REXX language.
This initial informal specification was then circulated
for review and critique. On the basis of advice re-
ceived, I revised the initial informal description,
which became the basis for a specification and im-
plementation. REXX was first implemented under the
Conversational Monitor System (CMS), which sup-
ported the concept of interpreted programs that
could be directly invoked by users.

The most important factor in the development of
REXX began to take effect when the first interpreter
was distributed over the IBM communication net-
work known as VNET. (This network links over 1400
mainframe computers in forty countries.) From the
beginning, many hundreds of people were using the
language. All these users, from temporary staff to
professional programmers, were able to provide im-
mediate feedback to the designer on their prefer-
ences, needs, and suggestions for change. An infor-
mal language committee then appeared sponta-

neously and communicated among themselves and
with the designer entirely electronically. The discus-
sions of the committee grew to be hundreds of
thousands of lines, and these and the similar quantity
of mail from the users were all kept for later review.

As time passed, it became clear that changes in the
language were necessary. Using the network, the
designer could interactively explain and discuss the
changes that were required, some of which were
incompatible with the then-current version of the
language. The decision to make an incompatible
change was never taken lightly, but--because
changes could be made relatively easily and ex-
plained to users in detail--the language was able to
evolve much further than would have been the case
if upward compatibility only were considered. Sev-
eral other important concepts guided the process of
enhancing the language.

Documentation before implementation. Each major
section of the REXX language was documented and
circulated for review before its implementation.
These sections were in the form of complete refer-
ence documentation that in due course became part
of the language reference manual. At the same time,
and before implementation, sample programs were
written to explore the usability of each proposed new
feature.

The benefits of this approach were marked:

• The majority of usability problems were discov-
ered before they became embedded in the language
or before any implementation of the language
included them.

• The writing of documentation was found to be
the most effective way of spotting inconsistencies,
ambiguities, or incompleteness in a design.

• The designer did not consider implementation
details until the documentation was complete, so
as to minimize the implementation's influence
upon the language.

• Reference documentation written after implemen-
tation is much more likely to be inaccurate or
incomplete than that written before implementa-
tion. After the documentation has been written,
the author is likely to know the implementation
too well to write an objective description.

User feedback. User feedback was fundamental to
the process of evolution of the REXX language. Al-
though users can often be incorrect in their sugges-
tions, even those suggestions that appeared to be

3 3 4 COWUSHAW IBM SYSTEMS JOURNAL. VOL 23, NO 4, t984

- 3 5 -

shallow were considered carefully because they were
often pointers to deficiencies in the language or
documen ta t ion . As a result o f the effective commu-
nica t ions network, m a n y details o f the language and
documen ta t i on could be revised and circulated effi-
ciently. M a n y i f not mos t of the good ideas embodied
in the language came directly from users. It is im-
possible to overes t imate the value of the direct feed-
back f rom users dur ing the deve lopment of REXX.

Concluding remarks

REXX is designed to be a practical and powerful
language, in tended to provide m a x i m u m effect for
the m i n i m u m of effort on the part o f the program-
mer. Close a t tent ion to the details o f syntax and
semant ics has resulted in m a n y differences from
earl ier languages, as well as many similarities. The
crucial concept , however, is that the language has
been designed for the user, not the implementer .
This emphas i s is par t icular ly visible in the areas of
readabi l i ty , na tura l da t a typing, and representat ion
o f data. In addi t ion to being easy to learn and to use,
the language conta ins sufficiently powerful con-
structs tha t it satisfies the needs o f many professional
appl icat ions. In add i t ion to its use as a personal
language, a variety o f ma jo r p rog ramming tasks have
been accompl ished using REXX, including product
prototypes , mac ro libraries, and c o m m a n d program-
ming.

The REXX language has benefited especially from
wide usage and feedback dur ing its development .
The advantages o f user experience and feedback have
far outweighed the p rob lems caused by occasional
incompat ib i l i t ies . The value to language design o f a
wor ldwide t e l ecommunica t ions network connecting
language users cannot be overest imated.

Acknowledgments

M a n y hundreds o f people have contr ibuted to the
deve lopmen t o f the REXX language in one way or
another , so it is impossible to thank them all. How-
ever, I a m especially indebted to several individuals
who have spent much t ime discussing R~XX and have
made m a j o r contr ibut ions: P. G. Capek, C. W. Chris-
tensen and the REXX Language Commit tee , S. Davies
(who also designed a n d implemen ted most o f the
bui l t - in functions), M. Hack, S, Nash, C. J. Stephen-
son, and C. H. Thompson . I also thank the manage-
men t o f the IBM Uni ted K i n g d o m Limi ted Scientific
Centre and the I B M Uni ted K ingdom Laboratories
L imi ted for the oppor tun i ty to w~te this paper.

Cited references
1. Virtual Machine~System Product: System Product Interpreter

Reference. IBM Reference Manual SC24-5239, IBM Corpo-
ration; available through IBM branch offices.

2. T. E. Kartz, "BASIC," ACM SIGPLAN Notices 13, No. 8,
103-118 (August 1978); ACM SIGPLAN History of Program-
ming Languages Conference, Los Angeles, CA, June 1-3,
1978.

3. B. Harvey, "Why Logo?", Byte 7, No. 8, 163-193 (August
1982).

4. Virtual Machine/System Product: EXEC 2 Reference, IBM
Reference Manual SC24-5219, IBM Corporation; available
through IBM branch offices.

5. S. R. Bourne, "The UNIX shell," Bell System Technical
Journal 57, No. 6, 1971-1990 (July 1978).

6. Wilbur Command Procedures, Computer Center, National
Institutes of Health, Bethesda, MD 20205 (December 1980).

7. IBM Personal Computer Disk Operating System, Version 2,
IBM Corporation; available through authorized IBM personal
computer dealers.

8. W. L. Ash, "Mxec: Parallel processing with an advanced macro
facility," Communications of the ACM 24, No. 8, 502-509
(August 1981).

9. J. R. Mashey, "Using a command language as a high-level
programming language," IEEE, Proceedings of the Second
International Conference on Software Engineering, San Fran-
cisco, CA (October 13-15, 1976), pp. 169-176.

10. A. W, Colijn, "Experiments with the Kronos control lan-
guage," So~ware--Practice and Experience 6, No. 1, 133-136
(1976).

11. J. Levine, "Why a Lisp-based command language?". ACM
SIGPLAN Notices 15, No. 5, 49-53 (May 1980).

12. A. W. Colijn. "A note on the Multics command language,"
Software--Practice and Experience 11, No. 7, 741-744 (July
1981).

13. E. C. Haeckel. IBM Santa Teresa Laboratory, 555 Bailey
Avenue, P.O. Box 50020, San Jose, CA 95150, personal
communication (1984).

14. C. J. Stephenson, "On the structure and control of com-
mands," ACM SIGOPS 7, No. 4, 22-26, 127-136 (1973).

15. Xerox Learning Research Group, "The Smalltalk-80 system,"
Byter, No. 8, 36.-47 (August 1981).

Reprint Order No. G321-5228.

Mike Cowlishaw IBM United Kingdom Limited Scientific Centre.
Athelstan House, St. Clement Street, Winchester. Hants, S023
9DR, England. Mr. Cowlishaw joined the IBM United Kingdom
Laboratories Limited at Hursley in 1974, alter receiving a B.Sc. in
electronic engineering from the University of Birmingham. From
then until 1980, he worked on the design of the hardware and
software of multimicroprocessor test tools. He spent any spare
time exploring the concept of the human-machine interface. This
included the implementation of the Structured Editing Tool
(STET), which is an editor that gives a tree-like structure to
programs or documentation. Other results of these spare-time
explorations are several compilers and assemblers and the first
version of the REXX lang~__ge. In 1980, Mr. Cowlishaw joined
the IBM Thomas J. Watson Research Center to work on a text
display system with real-time formatting and on specifications for
new faeifities for interactive operating systems. He returned in

to the Hursley Laboratory, where he completed work on the
XX language. In 1982, Mr. Cowfishaw joined the IBM United

Kingdom Scientific Centre in Winchester to do research on image
systems. His current research is concerned with color perception
and the modeling of brain mechanisms.

IBM SYSTEMS JOURNAL, VOL 23, NO 4. ~ COWUSHAW 335

